【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)的P(,8),Q(4,m)兩點,與x軸交于A點.

(1)分別求出這兩個函數(shù)的表達式;

(2)直接寫出不等式k1x+b的解集;

(3)M為線段PQ上一點,且MNx軸于N,求△MON的面積最大值及對應(yīng)的M點坐標.

【答案】(1)y=,y=﹣2x+9;(2)當x0x4時,k1x+b;(3)當x=時,面積最大值為,M(,

【解析】

(1)首先把P(,8)代入反比例函數(shù)解析式中確定k2的值,得到反比例函數(shù)解析式;然后把Q(4,m)代入反比例函數(shù)確定m的值,再根據(jù)P,Q兩點坐標利用待定系數(shù)法確定一次函數(shù)解析式;

(2)根據(jù)函數(shù)的圖象即可求得;

(3)設(shè)M(x,﹣2x+9),則ON=x,MN=﹣2X+9,根據(jù)三角形面積公式即可得到關(guān)于x的二次函數(shù),將其化為頂點式,即可得到函數(shù)的最大值,從而確定M點的坐標

(1)∵點P(,8)在反比例函數(shù)圖象上,

8=,

k2=4,

∴反比例函數(shù)的表達式為:,

Q(4,m)在反比例函數(shù)的圖象上,

m==1,

Q(4,1),

P(,8),Q(4,1)分別代入一次函數(shù)y=k1x+b中,

,

解得:k1=-2,b=9,

∴一次函數(shù)的表達式為y=﹣2x+9;

即反比例函數(shù)的表達式:,一次函數(shù)的表達式為:y=﹣2x+9;

(2)由圖象得:當x<0<x<4時,k1x+b≥

(3)設(shè)M(x,﹣2x+9),

ON=x,MN=﹣2X+9,

SMON=×ON×MN=x×(﹣2x+9)=﹣x2+x=﹣(x﹣2+,

∴當x=時,面積最大值為

M(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BADBC=CD=10,AC=17,AD=9,則AB=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰與等腰,,,,連接相交于點,交于點,交與點.下列結(jié)論:①;②;③平分;④若,則.其中一定正確的結(jié)論的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,以點A為圓心,小于AC的長為半徑作圓弧,分別交AB,ACE,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,以大于EF長為半徑作圓弧,兩條弧交于點G,作射線AGCD于點H,若∠C=120°,則∠AHD=(  )

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A地開往B地,甲車比乙車早出發(fā)2小時,并且在途中休息了0.5小時,休息前后速度相同,如圖是甲、乙兩車行駛的距離ykm)與時間xh)的函數(shù)圖象.解答下列問題:

1)圖中a的值為;

2)當x1.5h)時,求甲車行駛路程ykm)與時間xh)的函數(shù)關(guān)系式;

3)當甲車行駛多長時間后,兩車恰好相距40km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角中,,的平分線交于點.

1)求證:;

2)若的外角平分線以及的平分線交于點,(1)結(jié)論是否成立?請在圖中補全圖形,寫出結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABC中,∠ABC和∠ACB的平分線相交于點G,過點GEF BCABE,交ACF,過點GGD ACD,下列四個結(jié)論:①EF = BE+CF;②∠BGC= 90 °+A;③點G ABC各邊的距離相等;④設(shè)GD =m,AE + AF =n,則SAEF=mn.其中正確的結(jié)論有(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】飲水機接通電源就進入自動程序,若在水溫為時,接通電源后,水溫和時間的關(guān)系如圖.開機加熱時每分鐘上升,加熱到,飲水機關(guān)機停止加熱,水溫開始下降,下降時水溫與開機后的時間成反比例關(guān)系.當水溫降至,飲水機自動開機,重復(fù)上述自動程序.若上午開機,則時能否喝到超過的水?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是( )

A.角平分線上的點到這個角兩邊的距離相等

B.角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上

C.三角形三條角平分線的交點到三條邊的距離相等

D.以上均不正確

查看答案和解析>>

同步練習(xí)冊答案