【題目】先閱讀下列解題過(guò)程,然后回答問(wèn)題:

解方程:

解:①當(dāng)≥0時(shí),原方程可化為: ,解得

②當(dāng)<0時(shí),原方程可化為: ,解得;

所以原方程的解是

(1)解方程:

(2)探究:當(dāng)為何值時(shí),方程 ①無(wú)解;②只有一個(gè)解;③有兩個(gè)解。

【答案】(1)(2)時(shí),方程無(wú)解; =時(shí),方程只有一個(gè)解;即時(shí),方程有兩個(gè)解

【解析】試題分析:(1)首先要認(rèn)真審題,解此題時(shí)要理解絕對(duì)值的意義,要會(huì)去絕對(duì)值,然后化為一元一次方程即可求得.

(2)運(yùn)用分類(lèi)討論進(jìn)行解答.

試題解析:(1)當(dāng)3x-2≥0時(shí),原方程可化為:3x-2=4,

解得x=2;

當(dāng)3x-2<0時(shí),原方程可化為:3x-2=-4,

解得x=-

所以原方程的解是x=2x=-;

(2)|x-2|0,

∴當(dāng)b+1<0,即b<-1時(shí),方程無(wú)解;

當(dāng)b+1=0,即b=-1時(shí),方程只有一個(gè)解;

當(dāng)b+1>0,即b>-1時(shí),方程有兩個(gè)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC邊為直徑作⊙O交BC邊于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,ED、AC的延長(zhǎng)線(xiàn)交于點(diǎn)F.
(1)求證:EF是⊙O的切線(xiàn);
(2)若EB= ,且sin∠CFD= ,求⊙O的半徑與線(xiàn)段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)y=ax2+bx+c與x軸交于A(5,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C(0, ).

(1)求拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)上是否存在點(diǎn)P,使得△ACP是以點(diǎn)A為直角頂點(diǎn)的直角三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)G為拋物線(xiàn)上的一動(dòng)點(diǎn),過(guò)點(diǎn)G作GE垂直于y軸于點(diǎn)E,交直線(xiàn)AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線(xiàn),垂足為點(diǎn)F,連接EF,當(dāng)線(xiàn)段EF的長(zhǎng)度最短時(shí),求出點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2= (m≠0)的圖象交于點(diǎn)A(﹣1,6),B(a,﹣2).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類(lèi),并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫(xiě)出選取的兩名同學(xué)都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

五個(gè)邊長(zhǎng)為的小正方形如圖①放置,要求用兩條線(xiàn)段將它們分割成三部分后把它們拼接成一個(gè)新的正方形.

小辰是這樣思考的:圖①中五個(gè)邊長(zhǎng)為的小正方形的面積的和為,拼接后的正方形的面積也應(yīng)該是,故而拼接后的正方形的邊長(zhǎng)為,因此想到了依據(jù)勾股定理,構(gòu)造長(zhǎng)為的線(xiàn)段,即:,因此想到了兩直角邊分別為的直角三角形的斜邊正好是,如圖②,進(jìn)而拼接成了一個(gè)便長(zhǎng)為的正方形.

參考上面的材料和小辰的思考方法,解決問(wèn)題:

)五個(gè)邊長(zhǎng)為的小正方形如圖④放置,類(lèi)似圖③,在圖④中畫(huà)出分割線(xiàn)和拼接后的正方形(只要畫(huà)出一種即可).

)十個(gè)邊長(zhǎng)為的小正方形如圖⑤放置,類(lèi)似圖③,在圖⑤中畫(huà)出兩條分割線(xiàn)將它們分割成三部分,并畫(huà)出拼接后的正方形(只要畫(huà)出一種即可).

)五個(gè)邊長(zhǎng)為的小正方形如圖⑥放置,類(lèi)似圖③,在圖⑥中畫(huà)出兩條分割線(xiàn)將它們分割成三部分,并畫(huà)出拼接后的正方形(只要畫(huà)出一種即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在長(zhǎng)方形ABCD,AB=12 cm,BC=6 cm.點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始向點(diǎn)B2 cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開(kāi)始向點(diǎn)A1 cm/s的速度移動(dòng).

設(shè)點(diǎn)P,Q同時(shí)出發(fā)t(s)表示移動(dòng)的時(shí)間.

(發(fā)現(xiàn)) DQ________cm,AP________cm.(用含t的代數(shù)式表示)

(拓展)(1)如圖①,當(dāng)t________s時(shí),線(xiàn)段AQ與線(xiàn)段AP相等?

(2)如圖②,點(diǎn)P,Q分別到達(dá)BA后繼續(xù)運(yùn)動(dòng),點(diǎn)P到達(dá)點(diǎn)C后都停止運(yùn)動(dòng).

當(dāng)t為何值時(shí),AQCP?

(探究)若點(diǎn)P,Q分別到達(dá)點(diǎn)B,A后繼續(xù)沿著ABCDA的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)Q第一次相遇時(shí),請(qǐng)直接寫(xiě)出相遇點(diǎn)的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一假期,成都某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購(gòu)買(mǎi)了前往各地的車(chē)票,如圖是用來(lái)制作完整的車(chē)票種類(lèi)和相應(yīng)數(shù)量的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

若去丙地的車(chē)票占全部車(chē)票的,則總票數(shù)為______ 張,去丁地的車(chē)票有______

若公司采用隨機(jī)抽取的方式發(fā)車(chē)票,小胡先從所有的車(chē)票中隨機(jī)抽取一張所有車(chē)票的形狀、大小、質(zhì)地完全相同、均勻,那么員工小胡抽到去甲地的車(chē)票的概率是多少?

若有一張車(chē)票,小王和小李都想要,他們決定采取擲一枚質(zhì)地均勻的正方體骰子的方式來(lái)確定給誰(shuí),其上的數(shù)字是3的倍數(shù),則給小王,否則給小李請(qǐng)問(wèn)這個(gè)規(guī)則對(duì)雙方是否公平?若公平請(qǐng)說(shuō)明理由;若不公平,請(qǐng)通過(guò)計(jì)算說(shuō)明對(duì)誰(shuí)更有利.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,DE平分∠ADC, 且∠EDO=15°,則∠OED=________°

查看答案和解析>>

同步練習(xí)冊(cè)答案