【題目】如圖,已知正方形ABCD,把邊DC繞D點(diǎn)順時針旋轉(zhuǎn)30°到DC′處,連接AC′,BC′,CC′,寫出圖中所有的等腰三角形,并寫出推理過程.
【答案】△DCC′,△DC′A,△C′AB,△C′BC,理由見解析.
【解析】
試題利用旋轉(zhuǎn)的性質(zhì)以及正方形的性質(zhì)進(jìn)而得出等腰三角形,再利用全等三角形的判定與性質(zhì)判斷得出.
試題解析:圖中的等腰三角形有:△DCC′,△DC′A,△C′AB,△C′BC,理由如下:
∵四邊形ABCD是正方形,∴AB=AD=DC,∠BAD=∠ADC=90°.∴DC=DC′=DA.
∴△DCC′,△DC′A為等腰三角形.
∵∠C′DC=30°,∠ADC=90°,∴∠ADC′=60°.∴△AC′D為等邊三角形.
∵∠C′AB=90°-60°=30°,∴∠CDC′=∠C′AB.
在△DCC′和△AC′B中CD=BA,∠CDC′=∠C′AB,C′D=C′A,
∴△DCC′≌△AC′B(SAS).∴CC′=C′B,∴△BCC′為等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,F分別在AB,AD上,且BE=AF,連接CE,BF相交于點(diǎn)G,則下列結(jié)論不正確的是( )
A. BF=CE B. ∠AFB=∠ECD C. BF⊥CE D. ∠AFB+∠BEC=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)P(x,y)是線段AB上一動點(diǎn)(與A,B不重合),△PAO的面積為S,求S與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是反比例函數(shù)y=﹣ 的圖象上的一個動點(diǎn),連接OA,若將線段O A繞點(diǎn)O順時針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在邊DA的延長線上,且AF=CE,EF與AB交于點(diǎn)G.
(1)求證:AC∥EF;
(2)若點(diǎn)G是AB的中點(diǎn),BE=6,求邊AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為A(﹣1,3),B(﹣3,1),C(﹣1,1).請解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出B1的坐標(biāo).
(2)畫出△A1B1C1繞點(diǎn)C1順時針旋轉(zhuǎn)90°后得到的△A2B2C1 , 并求出點(diǎn)A1走過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長為( )
A.
B.2
C.
D.10﹣5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com