【題目】如圖,在△ABC中,ACAB,點(diǎn)EBC上,以BE為直徑的O經(jīng)過(guò)點(diǎn)A,點(diǎn)D是直徑BE下方半圓的中點(diǎn),ADBC于點(diǎn)F,且∠B2D

1)求∠B的度數(shù);

2)求證:ACO的切線;

3)連接DE,若OD3,求的值.

【答案】1)∠B30°;(2)詳見解析;(3

【解析】

1)先判斷出∠BAO+DAO45°,再判斷出∠DAO=∠D,∠BAO=∠B,即可得出結(jié)論;

2)先求出∠C30°,∠AOC60°,即可得出結(jié)論;

3)先求出AE3,再計(jì)算出CF,進(jìn)而求出EF,最后判斷出△DEF∽△DAE,即可得出結(jié)論.

解:(1)如圖1,連接OA

∵點(diǎn)D是直徑BE下方半圓的中點(diǎn),

,

∴∠BOD=∠EOD90°,

∴∠BADBOD45°,

∴∠BAO+DAO45°,

OAOBOD,

∴∠DAO=∠D,∠BAO=∠B,

∴∠B+D45°,

∵∠B2D,

∴∠B30°;

2)由(1)知,∠B30°,

ACAB,

∴∠C=∠B30°,

∴∠AOC2B60°,

∴∠CAO180°﹣∠C﹣∠CAO90°,

OAO的半徑,

ACO的切線;

3)如圖2,連接OA,AE,則∠BAE90°,

RtACO中,∠CAO90°,∠C30°,AOOEDO3,

∴AC=AO=3,OC2AO6

CEOCOE3,

CEOE3

由(2)知,∠CAO90°,

AEOC3,

∵∠CAO=∠COD90°,∠OAD=∠ODAB15°,

∴∠CAF=∠OFD75°,

∵∠CFA=∠OFD

∴∠CAF=∠CFA,

CFAC3,

∴EF=CF-CE=3

連接DE,

∴∠DEF=∠BAD45°,

∴∠DAE=∠BAE﹣∠BAD45°,

∴∠DEF=∠DAE

∵∠EDF=∠ADE,

∴△EDF∽△ADE,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象相交于點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn).

1)求反比例函數(shù)的表達(dá)式;

2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個(gè)交點(diǎn)為,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,分別為、的中點(diǎn),連接,交于點(diǎn),將沿對(duì)折,得到,延長(zhǎng)延長(zhǎng)線于點(diǎn),下列4個(gè)結(jié)論:①;②;③;④;正確的結(jié)論有__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新學(xué)期復(fù)學(xué)后,學(xué)校為了保障學(xué)生的出行安全,隨機(jī)調(diào)查了部分學(xué)生的上學(xué)方式(每位學(xué)生從乘私家車、坐公交、騎車和步行4種方式中限選1項(xiàng)),根據(jù)調(diào)查數(shù)據(jù)制作了如圖所示的不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.

(1)本次學(xué)校共調(diào)查了 名學(xué)生, , ;

(2)求扇形統(tǒng)計(jì)圖中步行對(duì)應(yīng)扇形的圓心角;

(3)甲、乙兩位同學(xué)住在同一小區(qū),且都坐公交車上學(xué),有、、三路公交車途徑該小區(qū)和學(xué)校,假設(shè)甲、乙兩位同學(xué)坐這三路公交車是等可能的,請(qǐng)用列表或畫樹狀圖的方法求某日甲、乙兩位同學(xué)坐同一路公交車到學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON30°,點(diǎn)A1ON上,點(diǎn)C1OM上,OA1A1C12,C1B1ON于點(diǎn)B1,以A1B1B1C1為鄰邊作矩形A1B1C1D1,點(diǎn)A1A2關(guān)于點(diǎn)B對(duì)稱,A2C2A1C1OM于點(diǎn)C2,C2B2ON于點(diǎn)B2,以A2B2B2C2為鄰邊作矩形A2B2C2D2,連接D1D2,點(diǎn)A2,A3關(guān)于點(diǎn)B2對(duì)稱,A3C3A2C2OM于點(diǎn)C3,C3B3ON于點(diǎn)B3,以A3B3B3C3為鄰邊作矩形A3B3C3D3,連接D2D3,……依此規(guī)律繼續(xù)下去,則DnDn+1_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+c+1x軸于點(diǎn)Aa,0)和Bb,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)命題:

①拋物線的對(duì)稱軸是直線x1

②若OCOB,則c2;

③若Mx0,y0)是x軸上方拋物線上一點(diǎn),則(x0a)(x0b)<0;

④拋物線上有兩點(diǎn)Px1,y1)和Qx2y2),若x11x2,且x1+x22,則y1y2.其中真命題個(gè)數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與A、B重合),D為的中點(diǎn),過(guò)點(diǎn)D作弦DEABFPBA延長(zhǎng)線上一點(diǎn),且∠PEA=∠B

1)求證:PE是⊙O的切線;

2)連接CADE相交于點(diǎn)G,CA的延長(zhǎng)線交PEH,求證:HEHG

3)若tanP,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,正方形與正方形有公共的頂點(diǎn),連接,,

   

①求證:;

②求的值;

2)將圖1中的正方形旋轉(zhuǎn)到圖2的位置,當(dāng),在一條直線上,若,求正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分,規(guī)定:85≤x≤100A級(jí),75≤x≤85B級(jí),60≤x≤75C級(jí),0x60D級(jí).現(xiàn)隨機(jī)抽取某中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:

1)在這次調(diào)查中,一共抽取了   名學(xué)生;

2)扇形統(tǒng)計(jì)圖中,α   %,C級(jí)對(duì)應(yīng)的圓心角為   度;

3)請(qǐng)你利用你所學(xué)的統(tǒng)計(jì)知識(shí),估計(jì)本次抽取所有學(xué)生的綜合評(píng)定成績(jī)的平均分.

查看答案和解析>>

同步練習(xí)冊(cè)答案