【題目】△ABC是等邊三角形,點D是射線BC上的一個動點(點D不與點B、C重合),△ADE是以AD為邊的等邊三角形,過點E作BC的平行線,分別交射線AB、AC于點F、G,連接BE.
(1)如圖(a)所示,當點D在線段BC上時,
①求證:△AEB≌△ADC;
②探究四邊形BCGE是怎樣特殊的四邊形?并說明理由;
(2)如圖(b)所示,當點D在BC的延長線上時,直接寫出(1)中的兩個結(jié)論是否成立___________;
(3)在(2)的情況下,當點D運動到____________________時,四邊形BCGE是菱形.
【答案】(1)①證明見解析;②平行四邊形.,理由見解析;(2)都成立;(3)CD=CB
【解析】【試題分析】(1)用邊角邊定理證明;利用兩組對邊分別平行的四邊形是平行四邊形;
(2)方法同(1)結(jié)論仍然成立;(3)菱形的判定,鄰邊相等的平行四邊形是菱形.
【試題解析】
(1) ①由題意得:AE=AD,AB=AC, 即 ,則△AEB≌△ADC(SAS);
②因為△AEB≌△ADC,則 ,因為,所以 ,所以BE//CG.因為EG//BC,所以四邊形BCGE是平行四邊形.
(2)思路同(1),兩個結(jié)論仍然成立;
(3)根據(jù) 當BC=BE時,即BC=CD, 平行四邊形BCGE是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】已知,在直角坐標系中,有A(0,3),B(2,1),C(﹣3,﹣3)三點.
(1)請在平面直角坐標系中描出各點,并畫出三角形ABC;
(2)三角形ABC的面積是 ;(直接寫出結(jié)果)
(3)設(shè)BC交y軸于點P,試求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王在解關(guān)于x的方程3a-2x=15時,誤將-2x看作2x,得方程的解x=3,
(1)求a的值;
(2)求此方程正確的解;
(3)若當y=a時,代數(shù)式的值為5,求當y=-a時,代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點D.
(1)求證:BE=CF;
(2)當四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù) (為常數(shù),且)的圖像交于
兩點.
(1)求反比例函數(shù)的表達式;
(2)在軸上找一點,使的值最小,求滿足條件的點的坐標;
(3)在(2)的條件下求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為加強學生的體育鍛煉,曾兩次在某商場購買足球和籃球第一次購買6個足球和5個籃球共花費700元;第二次購買3個足球和7個籃球共花費710元.
求足球和籃球的標價;
如果現(xiàn)在商場均以標價的6折對足球和籃球進行促銷,學校決定從該商場再一次性購買足球和籃球60個,且總費用不能超過2500元,那么最多可以購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中,
(1)請寫出△ABC各點的坐標.
(2)求出△ABC的面積.
(3)若把△ABC向上平移3個單位,再向右平移2個單位得△A1B1C1,在圖中畫出△A1B1C1的位置,并寫出點A1、B1、C1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】政府計劃投資14萬億元實施東進戰(zhàn)略.為了解民對東進戰(zhàn)略的關(guān)注情況,佳佳隨機采訪部分民,并對采訪情況制作了統(tǒng)計圖表的一部分如下:
關(guān)注情況 | 頻數(shù) | 頻率 |
A.高度關(guān)注 | m | 0.1 |
B.一般關(guān)注 | 200 | 0.5 |
C.不關(guān)注 | 60 | n |
D.不知道 | 100 | 0.25 |
(1)采訪總?cè)藬?shù)為__ __人,m=__ __,n=__ __;
(2)補全統(tǒng)計圖;
(3)估計在30 000名民中高度關(guān)注東進戰(zhàn)略的人數(shù)約為 人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com