【題目】如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內(nèi),三個頂點A,B,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED=90°,測得AD=5cm,BE=7cm,求該三角形零件的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,點E是菱形ABCD內(nèi)一點,連結(jié)CE繞點C順時針旋轉(zhuǎn)110°,得到線段CF,連結(jié)BE,DF,若∠E=86°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形的一條邊與另一條邊的反向延長線組成的角,叫做三角形的外角。如圖,點D為BC延長線上一點,則∠ACD為△ABC的一個外角。
求證:∠ACD=∠A+∠B
證明:過點C作CE∥AB(過直線外一點 )
∴∠B= ( )
∠A= ( )
∵∠ACD=∠1+∠2
∴∠ACD=∠ +∠B(等量代換)
應(yīng)用:如圖是一個五角星,請利用上述結(jié)論求
∠A+∠B+∠C+∠D+∠E的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,(1)∠AOB=60°,∠BOC=36°OD平分∠BOC,OE平分∠AOC,則∠EOD=____度;
(2)若∠AOB=90°,OD平分∠BOC,OE平分∠AOC,則∠EOD=__________;
(3)若∠AOB=α,其它條件同(2),則∠EOD=_________________.
類比應(yīng)用:
如圖②,已知線段AB,C是線段AB上任一點,D、E分別是AC、CB的中點,試猜想DE與AB的數(shù)量關(guān)系為_____________,并寫出求解過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示,(每個小方格都是邊長為1個單位長度的正方形).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B2,C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙M與菱形ABCD在平面直角坐標(biāo)系中,點M的坐標(biāo)為(﹣3,1),點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(1,﹣ ),點D在x軸上,且點D在點A的右側(cè).
(1)求菱形ABCD的周長;
(2)若⊙M沿x軸向右以每秒2個單位長度的速度平移,菱形ABCD沿x軸向左以每秒3個單位長度的速度平移,設(shè)菱形移動的時間為t(秒),當(dāng)⊙M與AD相切,且切點為AD的中點時,連接AC,求t的值及∠MAC的度數(shù);
(3)在(2)的條件下,當(dāng)點M與AC所在的直線的距離為1時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A(2,3),B(3,1),C(﹣2,﹣2)三點在格點上.
(1)作出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)直接寫出△ABC關(guān)于x軸對稱的△A2B2C2的各點坐標(biāo);
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,l1表示某公司一種產(chǎn)品一天的銷售收入與銷售量的關(guān)系,l2表示該公司這種產(chǎn)品一天的銷售成本與銷售量的關(guān)系.
(1)x=1時,銷售收入= 萬元,銷售成本= 萬元,盈利(收入﹣成本)= 萬元;
(2)一天銷售 件時,銷售收入等于銷售成本;
(3)l2對應(yīng)的函數(shù)表達式是 ;
(4)你能寫出利潤與銷售量間的函數(shù)表達式嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com