【題目】如圖,在△ABC中,AB=7.5,AC=9,S△ABC=.動點P從A點出發(fā),沿AB方向以每秒5個單位長度的速度向B點勻速運動,動點Q從C點同時出發(fā),以相同的速度沿CA方向向A點勻速運動,當點P運動到B點時,P、Q兩點同時停止運動,以PQ為邊作正△PQM(P、Q、M按逆時針排序),以QC為邊在AC上方作正△QCN,設(shè)點P運動時間為t秒.
(1)求cosA的值;
(2)當△PQM與△QCN的面積滿足S△PQM=S△QCN時,求t的值;
(3)當t為何值時,△PQM的某個頂點(Q點除外)落在△QCN的邊上.
【答案】(1)coaA=;(2)當t=時,滿足S△PQM=S△QCN;(3)當t=s或s時,△PQM的某個頂點(Q點除外)落在△QCN的邊上.
【解析】(1)如圖1中,作BE⊥AC于E.利用三角形的面積公式求出BE,利用勾股定理求出AE即可解決問題;
(2)如圖2中,作PH⊥AC于H.利用S△PQM=S△QCN構(gòu)建方程即可解決問題;
(3)分兩種情形①如圖3中,當點M落在QN上時,作PH⊥AC于H.②如圖4中,當點M在CQ上時,作PH⊥AC于H.分別構(gòu)建方程求解即可;
(1)如圖1中,作BE⊥AC于E.
∵S△ABC=ACBE=,
∴BE=,
在Rt△ABE中,AE=,
∴coaA=.
(2)如圖2中,作PH⊥AC于H.
∵PA=5t,PH=3t,AH=4t,HQ=AC-AH-CQ=9-9t,
∴PQ2=PH2+HQ2=9t2+(9-9t)2,
∵S△PQM=S△QCN,
∴PQ2=CQ2,
∴9t2+(9-9t)2=×(5t)2,
整理得:5t2-18t+9=0,
解得t=3(舍棄)或.
∴當t=時,滿足S△PQM=S△QCN.
(3)①如圖3中,當點M落在QN上時,作PH⊥AC于H.
易知:PM∥AC,
∴∠MPQ=∠PQH=60°,
∴PH=HQ,
∴3t=(9-9t),
∴t=.
②如圖4中,當點M在CQ上時,作PH⊥AC于H.
同法可得PH=QH,
∴3t=(9t-9),
∴t=,
綜上所述,當t=s或s時,△PQM的某個頂點(Q點除外)落在△QCN的邊上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.動點P從點D出發(fā),沿射線DA的方向以每秒2兩個單位長的速度運動,動點Q從點C出發(fā),在線段CB上以每秒1個單位長的速度向點B運動,點P,Q分別從點D,C同時出發(fā),當點Q運動到點B時,點P隨之停止運動.設(shè)運動的時間為t(秒).當t為__________ 時,以B,P,Q三點為頂點的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,O是AC、BD的交點,過點O 與AC垂直的直線交邊AD于點E,若□ABCD的周長為22cm,則△CDE的周長為( ).
A. 8cm B. 10cm C. 11cm D. 12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,點P在邊AB上,∠CPB的平分線交邊BC于點D,DE⊥CP于點E,DF⊥AB于點F.當△PED與△BFD的面積相等時,BP的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BD為內(nèi)角平分線,CE為外角平分線,若∠BDC=130°,∠E=50°,則∠BAC的度數(shù)為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,P為AB邊上一動點.若△PAD與△PBC是相似三角形,則滿足條件的點P有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=AC,D是AC上一點,AE⊥BD交BD的延長線于E,AE=BD,且DF⊥AB于F,求證:CD=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度數(shù);
(2)延長AC至E,使CE=AC,試說明DA=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,直線相交于點.
(1)若∠AOC=35°,求的度數(shù);
(2)若∠BOD:∠BOC=2:4,求的度數(shù);
(3)在(2)的條件下,過點作,求的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com