【題目】如圖,△ABC中邊AB的垂直平分線分別交BC、AB于點D、E, AE=3cm,△ADC的周長為9cm,則△ABC的周長是( )cm.
A.9B.12C.15D.18
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,對角線與相交于點,平分,交于點.
求證:;
點、點分別同時從、兩點出發(fā),以相同的速度運動相同的時間后同時停止,如圖,平分,交于點,過點作,垂足為,請猜想,與三者之間的數(shù)量關(guān)系,并證明你的猜想;
在的條件下,當,時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.閱讀:若x滿足(80﹣x)(x﹣60)=30,求的值.
解:設(shè)(80﹣x)=a,(x﹣60)=b,則(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,
所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340,
請仿照上例解決下面的問題:
(1)若 x 滿足(30﹣x)(x﹣20)=﹣10,求(30﹣x)2+(x﹣20)2的值.
(2)如圖,正方形 ABCD 的邊長為 x,AE=10,CG=25,長方形 EFGD 的面積是500,四邊形 NGDH 和 MEDQ 都是正方形,PQDH 是長方形,那么圖中陰影部分的面積等于_____(結(jié)果必須是一個具體數(shù)值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=BC,∠ACB=90°,D、E是直線AB上兩點.∠DCE=45°
(1)當CE⊥AB時,點D與點A重合,求證:DE2=AD2+BE2
(2)當AB=4時,求點E到線段AC的最短距離
(3)當點D不與點A重合時,探究:DE2=AD2+BE2是否成立?若成立,請證明;若不成立,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用圖1中四個完全一樣的直角三角形可以拼成圖2的大正方形。
解答下列問題:
(1)請用含、、的代數(shù)式表示大正方形的面積.
方法1: ;方法2: .
(2)根據(jù)圖2,利用圖形的面積關(guān)系,推導(dǎo)、、之間滿足的關(guān)系式.
(3)利用(2)的關(guān)系式解答:如果大正方形的面積是25,且,求小正方形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=12cm,BC=16cm,AB=20cm,∠CAB的角平分線AD交BC于點D.
(1)根據(jù)題意將圖形補畫完整(要求:尺規(guī)作圖保留作圖痕跡,不寫作法);
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△中,、的角平分線、交于點,延長、,,,則下列結(jié)論中正確的個數(shù)是( )
①CP平分∠ACF; ②∠ABC+2∠APC=180°;
③∠ACB=2∠APB; 、苋PM⊥BE,PN⊥BC,則AM+CN=AC;
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,⊙O是△ABC的內(nèi)切圓,D、E、F是切點.
(1)求證:四邊形ODCE是正方形;
(2)如果AC=6,BC=8,求內(nèi)切圓⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,∠C=90°,按以下步驟:①分別以A.B為圓心,以大于AB的長為半徑作弧,兩弧相交于兩點M、N;②作直線MN交BC于點D. 若AC=1.5,∠B=15°.則BD等于( )
A.1.5B.2C.2.5D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com