如圖,將長方形紙片的一角斜折,使頂點A落在A′處,EF為折痕;再將另一角斜折,使頂點B落在EA′上B′點處,折痕為EG;觀察并估計∠FEG=
90°
90°
.再測量進行驗證.你能說出理由嗎?若被折角∠AEF=30°,求∠A′EB的度數(shù).
分析:由折疊的性質可得:∠AEF=∠A′EF=
1
2
∠A′EA,∠BEC=∠B′EC=
1
2
∠B′EB,繼而可得∠FEG=90°,又由被折角∠AEF=30°,可求得∠A′EA的度數(shù),繼而求得∠A′EB的度數(shù).
解答:解:∵由折疊的性質可得:∠AEF=∠A′EF=
1
2
∠A′EA,∠BEC=∠B′EC=
1
2
∠B′EB,
∴∠FEG=∠A′EF+∠B′EC=
1
2
∠A′EA+
1
2
∠B′EB=
1
2
(∠A′EA+∠B′EB)=90°.
∵∠AEF=30°,
∴∠A′EA=2′AEF=60°,
∴∠A′EB=180°-∠A′EA=120°.
故答案為:90°.
點評:此題考查了折疊的性質以及角的計算.此題比較簡單,注意掌握折疊前后圖形的對應關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,將長方形紙片的一角折疊,使頂點A落在點A′處,BC為折痕,若BE是∠A′BD的角平分線,求∠CBE的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,將長方形紙片的一角折疊,使頂點A落在點A’處,BC為折痕,若BE是∠A′BD的平分線,則∠CBE的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將長方形紙片的一角折疊,使頂點A落在點A′處,BC為折痕,若BE是∠A′BD的平分線,則∠CBE的度數(shù)是
45
45
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將長方形紙片的兩角分別折疊,使頂點B落在B′處,頂點A落在A′處,EC、ED為折痕,并且點E、A′、B′在同一條直線上.若∠BED=32°,求∠CED和∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、如圖,將長方形紙片的兩角分別折疊,使頂點B落在B′處,頂點A落在A′處,EC為折痕,點E、A′、B′在同一條直線上.
(1)猜想折痕EC和ED的位置關系,并說明理由;
(2)ED的反向延長線交CA交于F,若∠BED=32°,求∠AEF和∠A′EC的度數(shù).

查看答案和解析>>

同步練習冊答案