科目:初中數(shù)學 來源: 題型:
已知:如圖,在⊙O中,直徑AB⊥CD于點E,連接BC.
(1)線段BC、BE、AB應滿足的數(shù)量關系是 ;
(2)若點P是優(yōu)弧上一點(不與點C、A、D重合),連接BP與CD交于點G.
請完成下面四個任務:
①根據(jù)已知畫出完整圖形,并標出相應字母;
②在正確完成①的基礎上,猜想線段BC、BG、BP應滿足的數(shù)量關系是 ;
③證明你在②中的猜想是正確的;
④點P′恰恰是你選擇的點P關于直徑AB的對稱點,那么按照要求畫出圖形后在②中的猜想仍然正確嗎? ;(填正確或者不正確,不需證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知⊙O的半徑為R,C、D是直徑AB的同側圓周上的兩點,弧AC的度數(shù)為100°弧BC=2弧BD,動點P在線段AB上,則PC+PD的最小值為 ( )(原創(chuàng))
A.R B.R C.R D.R
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,拋物線y=x2﹣x與x軸交于O,A兩點.半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動.兩圓同時出發(fā),且移動速度相等,當運動到P,Q兩點重合時同時停止運動.設點P的橫坐標為t.若⊙P與⊙Q相離,則t的取值范圍是_____ ____ .(根據(jù)2013金華模擬改編)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系中,坐標原點為O,A點坐標為(-4,0),B點坐標為(1,0),以AB的中點P為圓心,AB為直徑作⊙P與y軸的負半軸交于點C.
(1)求經過A、B、C三點的拋物線對應的函數(shù)表達式;
(2)設M為(1)中拋物線的頂點,試說明直線MC與⊙P的位置關系,并證明你的結論;
(3)在第二象限中是否存在的一點Q,使得以A,O,Q為頂點的三角形與△OBC相似。若存在,請求出所有滿足的Q點坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com