精英家教網 > 初中數學 > 題目詳情

【題目】東東玩具商店用500元購進一批悠悠球,很受中小學生歡迎,悠悠球很快售完,接著又用900元購進第二批這種悠悠球,所購數量是第一批數量的1.5倍,但每套進價多了5元.

(1)求第一批悠悠球每套的進價是多少元;

(2)如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?

【答案】(1)第一批悠悠球每套的進價是25元;(2)每套悠悠球的售價至少是35元.

【解析】

(1)設第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,根據數量=總價÷單價結合第二批購進數量是第一批數量的1.5倍,即可得出關于x的分式方程,解之經檢驗后即可得出結論;

(2)設每套悠悠球的售價為y元,根據銷售收入-成本=利潤結合全部售完后總利潤不低于25%,即可得出關于y的一元一次不等式,解之取其中的最小值即可得出結論.

1)設第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,

根據題意得:

,

解得:x=25,

經檢驗,x=25是原分式方程的解.

答:第一批悠悠球每套的進價是25元.

(2)設每套悠悠球的售價為y元,

根據題意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,

解得:y≥35.

答:每套悠悠球的售價至少是35元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】問題引入:

(1)如圖①所示,△ABC中,點O是∠ABC和∠ACB的平分線的交點,若∠A=,

則∠BOC= (表示);不用說明理由,直接填空.

如圖②所示,,,

則∠BOC= (表示). 不用說明理由,直接填空.

(2)如圖③所示,,,若,

則∠BOC= (表示),填空并說明理由.

類比研究:

(3)BO,CO分別是△ABC的外角∠DBC,ECBn等分線,

它們交于點O,,若

(n表示).不用說明理由,直接填空.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經過點A(4,﹣5),與x軸的負半軸交于點B,與y軸交于點C,且OC=5OB,拋物線的頂點為點D.

(1)求這條拋物線的解析式;
(2)連接AB,BC,CD,DA,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=2x2﹣4x﹣6.
(1)寫出拋物線的開口方向,對稱軸和頂點坐標.
(2)在平面直角坐標系中,畫出這個二次函數的圖象;

(3)當x取何值時,y隨x的增大而減少?
(4)求函數圖象與兩坐標軸交點所圍成的三角形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,PA,PB是⊙O的切線,A,B為切點,∠OAB=30度.

(1)求∠APB的度數;
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2+2x+2k﹣4=0有兩個不相等的實數根.
(1)求k的取值范圍:
(2)若k為正整數,且該方程的根都是整數,求k的值及該方程的根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內的一點,連接PA,PB,PC,BP為邊作∠PBQ=60,且BQ=BP,連接CQ.

(1)觀察并猜想APCQ之間的大小關系,并證明你的結論;

(2)PA=3,PB=4,PC=5,連接PQ,試判斷PQC的形狀,并說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,陰影部分組成的圖案既是關于x軸成軸對稱的圖形又是關于坐標原點O成中心對稱的圖形.若點A的坐標是(1,3),則點M和點N的坐標分別是(

A.M(1,﹣3),N(﹣1,﹣3)
B.M(﹣1,﹣3),N(﹣1,3)
C.M(﹣1,﹣3),N(1,﹣3)
D.M(﹣1,3),N(1,﹣3)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校準備組織290名學生進行野外考察活動,行李件數比學生人數的一半還少45.學校計劃租用甲、乙兩種型號的汽車共8輛,經了解,甲種汽車每輛最多能載40人和10件行李,乙種汽車最多能載30人和20件行李.

(1)求行李有多少件?

(2)現計劃租用甲種汽車x輛,請你幫學校設計所有可能的租車方案.

(3)如果甲、乙兩種汽車每輛的租車費分別是2000元、1800元,請你選擇最省錢的一種租車方案,并求出至少的費用是多少元.

查看答案和解析>>

同步練習冊答案