【題目】在平面直角坐標(biāo)系xOy中,△ABC的位置如圖所示.
(1)頂點A關(guān)于x軸對稱的點A′的坐標(biāo)(____________),頂點B的坐標(biāo)(____________),頂點C關(guān)于原點對稱的點C′的坐標(biāo)(____________).
(2)△ABC的面積為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點,與y軸交于C、D兩點,點E為⊙G上一動點,CF⊥AE于F.當(dāng)點E從點B出發(fā)順時針運(yùn)動到點D時,點F所經(jīng)過的路徑長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一工地計劃租用甲、乙兩輛車清理淤泥,從運(yùn)輸量來估算,若租兩車合運(yùn),10天可以完成任務(wù),若甲車的效率是乙車效率的2倍.
甲、乙兩車單獨完成任務(wù)分別需要多少天?
已知兩車合運(yùn)共需租金65000元,甲車每天的租金比乙車每天的租金多1500元試問:租甲乙車兩車、單獨租甲車、單獨租乙車這三種方案中,哪一種租金最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=90°, D是直線AB上的點,AD=BC ,過點A作AF⊥AB,并截取AF=DB ,連接DC、DF、CF ,判斷△CDF的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ABMN和正方形ACDE,CN、BE交于點P. 求證:∠ANC = ∠ABE.
應(yīng)用:Q是線段BC的中點,連結(jié)PQ. 若BC = 6,則PQ = ___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個動點P,當(dāng)點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將矩形ABCD沿直線AE折疊,頂點D正好落在BC邊上F點處,已知CE=3cm, AB=8cm,則圖中AD長為______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=6,BC=8(如圖),點D是邊AB上一點,把△ABC繞著點D旋轉(zhuǎn)90°得到△A'B'C',邊B'C'與邊AB相交于點E,如果AD=BE,那么AD長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,學(xué)習(xí)完“代人消元法”和“加減消元法“解二元一次方程組后,善于思考的小銘在解方程組時,采用了一種“整體代換”的解法:
解:將方程②變形:4x+10y+y=5即2(2x+5y)+y=5③
把方程①代入③得:2×3+y=5,∴y=-1①得x=4,所以,方程組的解為.
請你解決以下問題:
(1)模仿小銘的“整體代換”法解方程組.
(2)已知x,y滿足方程組,求x2+4y2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com