【題目】一工地計劃租用甲、乙兩輛車清理淤泥,從運輸量來估算,若租兩車合運,10天可以完成任務,若甲車的效率是乙車效率的2倍.

甲、乙兩車單獨完成任務分別需要多少天?

已知兩車合運共需租金65000元,甲車每天的租金比乙車每天的租金多1500試問:租甲乙車兩車、單獨租甲車、單獨租乙車這三種方案中,哪一種租金最少?請說明理由.

【答案】1)甲車單獨完成需要15天,乙車單獨完成需要30天;(2)單獨租甲車租金最少,見解析

【解析】

設甲車單獨完成任務需要x天,則乙單獨完成需要2x天,根據題意所述等量關系可得出方程,解出即可;

結合的結論,分別計算出三種方案各自所需的費用,然后比較即可.

解:設甲車單獨完成任務需要x天,則乙單獨完成需要2x天,根據題意可得:

,

解得:,

經檢驗得,x是原方程的解,則

即甲車單獨完成需要15天,乙車單獨完成需要30天;

設甲車每天租金為a元,乙車每天租金為b元,

則根據兩車合運共需租金65000元,甲車每天的租金比乙車每天的租金多1500元可得:

,

解得:,

租甲乙兩車需要費用為:65000元;

單獨租甲車的費用為:元;

單獨租乙車需要的費用為:元;

綜上可得,單獨租甲車租金最少.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:a是最大的負整數(shù),b是最小的正整數(shù),且ca+b,請回答下列問題:

1)請直接寫出a,b,c的值:a   ;b   ;c   ;

2a,b,c在數(shù)軸上所對應的點分別為A,B,C,請在如圖的數(shù)軸上表示出A,BC三點;

3)在(2)的情況下.點AB,C開始在數(shù)軸上運動,若點A,點C以每秒1個單位的速度向左運動,同時,點B以每秒5個單位長度的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,請問:ABBC的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求出ABBC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,奧運福娃在5×5的方格(每小格邊長為1m)上沿著網格線運動.貝貝從A處出發(fā)去尋找B、C、D處的其它福娃,規(guī)定:向上向右走為正,向下向左走為負.如果從AB記為:AB+1,+4),從BA記為:BA(﹣1,﹣4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中

1BD      ),C   (﹣3,﹣4);

2)若貝貝的行走路線為ABCD,請計算貝貝走過的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,城市規(guī)劃部門計劃在城市廣場的一塊長方形空地上修建乙面積為1500m2的停車場,將停車場四周余下的空地修建成同樣寬的通道,已知長方形空地的長為60m,寬為40m.

(1)求通道的寬度;

(2)某公司承攬了修建停車場的工程(不考慮修通道),為了盡量減少施工對城市交通的影響,實施施工時,每天的工作效率比原計劃增加了20%,結果提前2天完成任務,求該公司原計劃每天修建多少m2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面內由極點、極軸和極徑組成的坐標系叫做極坐標系.如圖,在平面上取定一點O稱為極點;從點O出發(fā)引一條射線Ox稱為極軸;線段OP的長度稱為極徑.點P的極坐標就可以用線段OP的長度以及從Ox轉動到OP的角度(規(guī)定逆時針方向轉動角度為正)來確定,即P3,60°)或P3,﹣300°)或P3,420°)等,則點P關于點O成中心對稱的點Q的極坐標表示不正確的是( 。

A. Q3,-120°)B. Q3,240°)C. Q3,-500°)D. Q3,600°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:①數(shù)軸上表示+3的點只有1;②表示負數(shù)的點都在原點的左邊;③數(shù)軸上到原點的距離是2個單位長度的點表示的數(shù)是2;④數(shù)軸上的一個點不在原點左邊,則這個點表示的數(shù)一定是正數(shù);⑤數(shù)軸上表示-3的點在原點右邊3個單位長度處.其中正確的有________. (在橫線上標出正確的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D.

(1)求證:AC平分∠DAB;

(2)求證:AC2=ADAB;

(3)若AD=,sinB=,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在甲、乙兩個不透明的口袋中裝有質地、大小相同的小球,甲袋中有2個白球,1個黃球和1個紅球:乙袋中裝有1個白球,1個黃球和若干個紅球,從乙盒中仼意摸取一球為紅球的概率是從甲盒中仼意摸取一球為紅球的概率的2倍.

1)乙袋中紅球的個數(shù)為 

2)若摸到白球記1分,摸到黃球記2分,摸到紅球記0分,小明從甲、乙兩袋中先后分別任意摸取一球,請用樹狀圖或列表的方法求小明摸得兩個球得2分的概率.

查看答案和解析>>

同步練習冊答案