【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn),∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,連接OD.
(1)求證:△OCD是等邊三角形;
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(3)△AOD能否為等邊三角形?為什么?
(4)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形.
【答案】(1)、證明過(guò)程見(jiàn)解析;(2)、直角三角形、理由見(jiàn)解析;(3)、不能,理由見(jiàn)解析;(4)、α=110°或125°或140°
【解析】
試題分析:(1)、根據(jù)△BOC≌△ADC得到OC=DC,結(jié)合∠OCD=60°,從而得出等邊三角形;(2)、根據(jù)△BOC≌△ADC,∠α=150°得到∠ADC=∠BOC=150°,根據(jù)等邊三角形得到∠ODC=60°,從而得出∠ADO=90°,從而得到三角形的形狀;(3)、由△BOC≌△ADC,得∠ADC=∠BOC=∠α,當(dāng)△AOD為等邊三角形時(shí),則∠ADO=60°,結(jié)合∠ODC=60°得出∠ADC=120°,又根據(jù)∠AOD=∠DOC=60°得出∠AOC=120°,從而求出∠AOC+∠AOB+∠BOC≠360°,從而得到答案;(4)、根據(jù)△OCD是等邊三角形得到∠COD=∠ODC=60°,根據(jù)三角形的性質(zhì)得出∠ADC=∠BOC=α,∠AOD=190°-α,∠OAD=50°,然后分三種情況分別求出α的大小.
試題解析:(1)、∵△BOC≌△ADC,∴OC=DC.∵∠OCD=60°,∴△OCD是等邊三角形.
(2)、△AOD是Rt△.理由如下:
∵△OCD是等邊三角形,∴∠ODC=60°, ∵△BOC≌△ADC,∠α=150°,∴∠ADC=∠BOC=∠α=150°,
∴∠ADO=∠ADC-∠ODC=150°-60°=90°,∴△AOD是Rt△.
(3)、不能.理由:由△BOC≌△ADC,得∠ADC=∠BOC=∠α.
若△AOD為等邊三角形,則∠ADO=60°,又∠ODC=60°,∴∠ADC=∠α=120°.
又∠AOD=∠DOC=60°,∴∠AOC=120°,又∵∠AOB=110°,
∴∠AOC+∠AOB+∠BOC=120°+120°+110°=350°<360°. 所以△AOD不可能為等邊三角形.
(4)、∵△OCD是等邊三角形,∴∠COD=∠ODC=60°. ∵∠AOB=110°,∠ADC=∠BOC=α,
∴∠AOD=360°-∠AOB-∠BOC-∠COD=360°-110°-α-60°=190°-α, ∠ADO=∠ADC-∠ODC=α-60°,
∴∠OAD=180°-∠AOD-∠ADO=180°-(190°-α)-(α-60°)=50°.
①當(dāng)∠AOD=∠ADO時(shí),190°-α=α-60°,∴α=125°.
②當(dāng)∠AOD=∠OAD時(shí),190°-α=50°,∴α=140°.
③當(dāng)∠ADO=∠OAD時(shí),α-60°=50°,∴α=110°.
綜上所述:當(dāng)α=110°或125°或140°時(shí),△AOD是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)據(jù)11,8,2,7,9,2,7,3,2,0,5的眾數(shù)是( )
A.2
B.7
C.3
D.2與7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)P(﹣2,1),則這個(gè)函數(shù)的圖象位于( 。
A.第一、三象限
B.第二、三象限
C.第二、四象限
D.第三、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1,l2交于點(diǎn)C和D,直線l3上有一點(diǎn)P。
(1)如圖1,若P點(diǎn)在C,D之間運(yùn)動(dòng)時(shí),問(wèn)∠PAC,∠APB,∠PBD之間的關(guān)系是否發(fā)生變化,并說(shuō)明理由;
(2)若點(diǎn)P在C,D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C,D不重合,如圖2和3),試寫(xiě)出∠PAC,∠APB,∠PBD之間的關(guān)系,并說(shuō)明理由。(圖3只寫(xiě)結(jié)論,不寫(xiě)理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一組數(shù)據(jù):5,15,75,45,25,75,45,35,45,35,那么40是這一組數(shù)據(jù)的( 。
A. 平均數(shù)但不是中位數(shù) B. 平均數(shù)也是中位數(shù)
C. 眾數(shù) D. 中位數(shù)但不是平均數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】沿著一條公路栽樹(shù),第一棵栽在路的始端,以后每隔50米栽一棵,要求路的末端栽一棵,這樣,缺少21棵樹(shù);如果每隔55米栽一棵,要求在路的末端栽一棵,這樣,只缺少一棵樹(shù).求樹(shù)的棵數(shù)和這條公路的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程x(x﹣2)=3x的解為( )
A. x=5 B. x1=0,x2=5 C. x1=2,x2=0 D. x1=0,x2=﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0),C(2,3)兩點(diǎn),與y軸交于點(diǎn)N.其頂點(diǎn)為D.
(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)M(3,m),求使MN+MD的值最小時(shí)m的值;
(3)若拋物線的對(duì)稱(chēng)軸與直線AC相交于點(diǎn)B,E為直線AC上的任意一點(diǎn),過(guò)點(diǎn)E作EF∥BD交拋物線于點(diǎn)F,以B,D,E,F(xiàn)為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請(qǐng)說(shuō)明理由;
(4)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com