【題目】如圖,的半徑為2,圓心的坐標(biāo)為,點(diǎn)是上的任意一點(diǎn),,且、與軸分別交于、兩點(diǎn),若點(diǎn)、點(diǎn)關(guān)于原點(diǎn)對稱,則的最大值為( )
A.7B.14C.6D.15
【答案】B
【解析】
根據(jù)“PA⊥PB,點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)O對稱”可知AB=2OP,從而確定要使AB取得最大值,則OP需取得最大值,然后過點(diǎn)M作MQ⊥x軸于點(diǎn)Q,確定OP的最大值即可.
∵PA⊥PB
∴∠APB=90°
∵點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)O對稱,
∴AO=BO
∴AB=2OP
若要使AB取得最大值,則OP需取得最大值,
連接OM,交○M于點(diǎn),當(dāng)點(diǎn)P位于位置時(shí),OP取得最小值,
過點(diǎn)M作MQ⊥x軸于點(diǎn)Q,
則OQ=3,MQ=4,
∴OM=5
∵
∴
當(dāng)點(diǎn)P在的延長線于○M的交點(diǎn)上時(shí),OP取最大值,
∴OP的最大值為3+2×2=7
∴AB的最大值為7×2=14
故答案選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,經(jīng)順時(shí)針旋轉(zhuǎn)后與重合.
旋轉(zhuǎn)中心是點(diǎn)________,旋轉(zhuǎn)了________度;
如果,,求:四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點(diǎn)A測得大樹頂端B的仰角是45°,沿斜坡走米到達(dá)斜坡上點(diǎn)D,在此處測得樹頂端點(diǎn)B的仰角為30°,且斜坡AF的坡比為1︰2.則小明從點(diǎn)A走到點(diǎn)D的過程中,他上升的高度為____米;大樹BC的高度為____米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCO的頂點(diǎn)B、C在第二象限,點(diǎn)A(﹣3,0),反比例函數(shù)y=(k<0)圖象經(jīng)過點(diǎn)C和AB邊的中點(diǎn)D,若∠B=α,則k的值為( )
A. ﹣4tanαB. ﹣2sinαC. ﹣4cosαD. ﹣2tan
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期豬肉價(jià)格不斷走高,引起市民與政府的高度關(guān)注,當(dāng)市場豬肉的平均價(jià)格達(dá)到一定的單價(jià)時(shí),政府將投入儲備豬肉以平抑豬肉價(jià)格.
(1)從今年年初至5月20日,豬肉價(jià)格不斷走高,5月20日比年初價(jià)格上漲了60%,某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價(jià)格為每千克多少元?
(2)5月20日豬肉價(jià)格為每千克40元,5月21日,某市決定投入儲備豬肉,并規(guī)定其銷售價(jià)格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價(jià)出售一批儲備豬肉,該超市在非儲備豬肉的價(jià)格仍為40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比5月20日提高了,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,的平分線交于點(diǎn),點(diǎn)在上,以點(diǎn)為圓心,為半徑的圓恰好經(jīng)過點(diǎn),分別交,于點(diǎn),
(1)試判斷直線與的位置關(guān)系,并說明理由.
(2)若,,求陰影部分的面積(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P1(﹣1,y1),P2(2,y2),P3(5,y3)均在二次函數(shù)y=﹣x2+2x+c的圖象上,則y1,y2,y3的大小關(guān)系是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(2,-5),頂點(diǎn)坐標(biāo)為(-1,4),直線l的解析式為y=2x+m.
(1)求拋物線的解析式;
(2)若拋物線與直線l有兩個(gè)公共點(diǎn),求的取值范圍;
(3)若直線l與拋物線只有一個(gè)公共點(diǎn)P,求點(diǎn)P的坐標(biāo);
(4)設(shè)拋物線與軸的交點(diǎn)分別為A、B,求在(3)的條件下△PAB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com