美化城市,改善人們的居住環(huán)境已成為城市建設(shè)的一項(xiàng)重要內(nèi)容,某市城區(qū)近幾年來,通過拆遷舊房,植草,栽樹,修建公園等措施,使城區(qū)綠化面積不斷增加(如圖所示)
(1)根據(jù)圖中所提供的信息,回答下列問題:2001年的綠化面積為 公頃,比2000年增加了 公頃。在1999年,2000年,2001年這三年中,綠化面積增加最多的是 年。(3分)
(2)為滿足城市發(fā)展的需要,計(jì)劃到2003年使城區(qū)綠化地總面積達(dá)到72.6公頃,試求這兩年(2001~2003)綠地面積的年平均增長率。(8分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
四邊形ABCD中,對角線AC,BD相交于點(diǎn)O,給出下列四個(gè)條件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.
從中任選兩個(gè)條件,能使四邊形ABCD為平行四邊形的選法有( )
A.3種 B.4種 C.5種 D.6種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
對正方形ABCD進(jìn)行分割,如圖1,其中E,F分別是BC,CD的中點(diǎn),M,N,G分別是OB,OD,EF的中點(diǎn),沿分化線可以剪出一副“七巧板”,用這些部件可以拼出很多圖案,圖2就是用其中6塊拼出的“飛機(jī)”.若△GOM的面積為1,則“飛機(jī)”的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
木工師傅在做完門框后,為防止變形常常像圖中所示那樣釘上兩條斜拉的木板條(即圖中的AB和CD),這樣做的根據(jù)是( 。
A.矩形的對稱性 | B.矩形的四個(gè)角都是直角 |
C.三角形的穩(wěn)定性 | D.兩點(diǎn)之間線段最短 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,D為AB中點(diǎn),E在AC上,且BE⊥AC.若DE=10,AE=16,則BE的長度為( 。
A.10 | B.11 | C.12 | D.13 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例,請補(bǔ)充完整.
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=CD, ∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°, ∴∠FDG=180°,點(diǎn)F、D、G共線.
根據(jù) ,易證△AFG≌ ,得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com