【題目】如圖,已知點(diǎn)C是AB上一點(diǎn),△ACM、△CBN都是等邊三角形。
(1)△ACN≌△MCB嗎?為什么?
(2)證明:CE=CF;
(3)若△CBN繞著點(diǎn)C旋轉(zhuǎn)一定的角度(如圖2),則上述2個(gè)結(jié)論還成立嗎?
(4)若AN、MB相交于O,則∠AOB度數(shù)有沒變化?若沒有變化,則∠AOB= .
【答案】(1)見解析;(2)見解析;(3)△ACN≌△MCB成立,CE=CF不成立;(4)120°.
【解析】
(1)根據(jù)等邊三角形性質(zhì)得出AC=CM,CN=CB,∠ACM=∠BCN=60°,求出∠ACN=∠BCM,根據(jù)SAS證出△ACN≌△MCB即可;
(2)因?yàn)椤?/span>ACB=180°,∠ACM=∠BCN=60°,所以∠MCN=∠BCN,又因?yàn)椤?/span>ACN≌△MCB,所以∠ABM=∠ANC,則可根據(jù)ASA判定△CEN≌△CFB,即CE=CF;
(3)由(1)的條件不變,即可證明△ACN≌△MCB成立;由于證明△CEN≌△CFB的條件不夠,則CE=CF不成立;
(4)由三角形的外角性質(zhì),∠AOB=∠ONB+∠OBN,然后由∠ABM=∠ANC,則∠AOB=∠CNB+∠CBN=120°,即可.
解:(1)∵△ACM與△CBN為等邊三角形,
∴∠ACM=∠BCN=60°,AC=MC,BC=NC,
∴∠ACN=∠MCB
∴△ACN≌△MCB(SAS)
(2)∵∠ACB=180°,∠ACM=∠BCN=60°,
∴∠MCN=∠BCN=60°,
∵△ACN≌△MCB,
∴∠ABM=∠ANC,
∵∠MCN=∠BCN,BC=CN,∠ABM=∠ANC,
∴△CEN≌△CFB(ASA),
∴CE=CF
(3)△ACN≌△MCB成立,CE=CF不成立.(答對(duì)一個(gè)得一分)
因?yàn)樗袟l件都沒有發(fā)生改變,即
由∠ACM=∠BCN=60°,AC=MC,BC=NC,
∴∠ACN=∠MCB
∴△ACN≌△MCB(SAS);
因?yàn)樽C明△CEN≌△CFB的條件不夠,
則CE=CF不成立;
(4)∠AOB度數(shù)沒有發(fā)生改變,∠AOB =120°;
如上圖,由三角形的外角性質(zhì),
∴∠AOB=∠ONB+∠OBN,
∵∠ABM=∠ANC,
又∠ONB=∠ANC+∠CNB,∠OBN=∠CBN-∠ABM,
∴∠AOB=∠CNB+∠CBN=120°,
故答案為:120°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD邊長(zhǎng)為3,點(diǎn)E在AB邊上且BE=1,點(diǎn)P,Q分別是邊BC,CD的動(dòng)點(diǎn)(均不與頂點(diǎn)重合),當(dāng)四邊形AEPQ的周長(zhǎng)取最小值時(shí),四邊形AEPQ的面積是( )
A. 3 B. 5 C. 4 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y關(guān)于x的二次函數(shù)y=ax2﹣bx+2(a≠0).
(1)當(dāng)a=﹣2,b=﹣4時(shí),求該函數(shù)圖象的對(duì)稱軸及頂點(diǎn)坐標(biāo).
(2)在(1)的條件下,Q(m,t)為該函數(shù)圖象上的一點(diǎn),若Q關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P也落在該函數(shù)圖象上,求m的值.
(3)當(dāng)該函數(shù)圖象經(jīng)過點(diǎn)(1,0)時(shí),若A(,y1),B(,y2)是該函數(shù)圖象上的兩點(diǎn),試比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在∠AOB的兩邊截取OA=OB,OC=OD,連接AD,BC交于點(diǎn)P,則下列結(jié)論中①△AOD≌△BOC,②△APC≌△BPD,③點(diǎn)P在∠AOB的平分線上.正確的是__.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的一種飲料由A、B兩種原液按一定比例配制而成,其中A原液成本價(jià)為10元/千克,B原液為15元/千克,按現(xiàn)行價(jià)格銷售每千克獲得60%的利潤(rùn)率.由于物價(jià)上漲,A原液上漲20%,B原液上漲10%,配制后的總成本增加15%,公司為了拓展市場(chǎng),打算再投入現(xiàn)行總成本的25%做廣告宣傳,使得銷售成本再次增加,如果要保證每千克的利潤(rùn)率不變,則此時(shí)這種飲料的售價(jià)與原售價(jià)之差為_____元/千克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校新到一批理、化、生實(shí)驗(yàn)器材需要整理,若實(shí)驗(yàn)管理員李老師一人單獨(dú)整理需要40分鐘完成,現(xiàn)在李老師與工人王師傅共同整理20分鐘后,李老師因事外出,王師傅再單獨(dú)整理了20分鐘才完成任務(wù).
(1)王師傅單獨(dú)整理這批實(shí)驗(yàn)器材需要多少分鐘?
(2)學(xué)校要求王師傅的工作時(shí)間不能超過30分鐘,要完成整理這批器材,李老師至少要工作多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸子A、B兩點(diǎn),與反比例函數(shù)y的圖象交于C、D兩點(diǎn),DE⊥x軸于點(diǎn)E,已知點(diǎn)C的坐標(biāo)是(6,-1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩班英語(yǔ)口語(yǔ)水平,每班隨機(jī)抽取了10名學(xué)生進(jìn)行了口語(yǔ)測(cè)驗(yàn),測(cè)驗(yàn)成績(jī)滿分為10分,參加測(cè)驗(yàn)的10名學(xué)生成績(jī)(單位:分)稱為樣本數(shù)據(jù),抽樣調(diào)查過程如下:
收集數(shù)據(jù)
甲、乙兩班的樣本數(shù)據(jù)分別為:
甲班:6 7 9 4 6 7 6 9 6 10
乙班:7 8 9 7 5 7 8 5 9 5
整理和描述數(shù)據(jù)
規(guī)定了四個(gè)層次:9分以上(含9分)為“優(yōu)秀”,8-9分(含8分)為“良好”,6-8分(含6分)為“一般”,6分以下(不含6分)為“不合格”。按以上層次分布繪制出如下的扇形統(tǒng)計(jì)圖。
請(qǐng)計(jì)算:(1)圖1中,“不合格”層次所占的百分比;
(2)圖2中,“優(yōu)秀”層次對(duì)應(yīng)的圓心角的度數(shù)。
分析數(shù)據(jù)
對(duì)于甲、乙兩班的樣本數(shù)據(jù),請(qǐng)直接回答:
(1)甲班的平均數(shù)是7,中位數(shù)是_____;乙班的平均數(shù)是_____,中位數(shù)是7;
(2)從平均數(shù)和中位數(shù)看,____班整體成績(jī)更好。
解決問題
若甲班50人,乙班40人,通過計(jì)算,估計(jì)甲、乙兩班“不合格”層次的共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某銷售商準(zhǔn)備在南充采購(gòu)一批絲綢,經(jīng)調(diào)查,用10000 元采購(gòu) A 型絲綢的件數(shù)與用8000 元采購(gòu) B 型絲綢的件數(shù)相等,一件 A 型絲綢進(jìn)價(jià)比一件 B 型絲綢進(jìn)價(jià)多100 元.
(1)求一件 A 型、 B 型絲綢的進(jìn)價(jià)分別為多少元?
(2)若經(jīng)銷商購(gòu)進(jìn) A 型、 B 型絲綢共50 件,其中 A 型的件數(shù)不大于 B 型的件數(shù),且不少于16件,設(shè)購(gòu)進(jìn) A 型絲綢 m 件,回答以下問題:
①已知 A 型的售價(jià)是800 元/件, B 型的售價(jià)為 600 元/件,寫出銷售這批絲綢的利潤(rùn) w(元)與 m (件)的函數(shù)關(guān)系式以及 m 的取值范圍;
②當(dāng)購(gòu)進(jìn) A 型、 B 型各多少件時(shí),利潤(rùn)最大,并求出最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com