【題目】如圖,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于點(diǎn)E,F(xiàn)是AB的中點(diǎn),聯(lián)結(jié)AE、EF,且AE⊥BE.
求證:(1)四邊形BCEF是菱形;
(2).
【答案】(1)證明見解析;(2)證明見解析.
【解析】分析:(1)根據(jù)角平分線的性質(zhì)可得出∠ABE=∠CBE,由直角三角形斜邊上中線等于斜邊的一半可得出EF=BF=AB,進(jìn)而可得出∠FEB=∠FBE=∠CBE,由“內(nèi)錯(cuò)角相等,兩直線平行”可得出EF∥BC,結(jié)合AB∥CD可得出四邊形BCEF是平行四邊形,再由鄰邊EF=BF即可證出四邊形BCEF是菱形;
(2)根據(jù)菱形的性質(zhì)可得出BC=BF,結(jié)合BF=AB可得出AB=2BC,由AB∥CD可得出∠DEA=∠EAB,結(jié)合∠D=∠AEB=90°可證出△EDA∽△AEB,根據(jù)相似三角形的性質(zhì)可得出BEAE=ADBA,代入BA=2BC即可證出結(jié)論.
詳解:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.
∵AE⊥BE,∴∠AEB=90°.
∵F是AB的中點(diǎn),∴EF=BF=AB,∴∠FEB=∠FBE=∠CBE,∴EF∥BC.
∵AB∥CD,∴四邊形BCEF是平行四邊形.
∵EF=BF,∴四邊形BCEF是菱形.
(2)∵四邊形BCEF是菱形,∴BC=BF.
∵BF=AB,∴AB=2BC.
∵AB∥CD,∴∠DEA=∠EAB.
∵∠D=∠AEB=90°,∴△EDA∽△AEB,∴=,∴BEAE=ADBA,∴BEAE=2ADBC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C為數(shù)軸上的三點(diǎn),動(dòng)點(diǎn)A、B同時(shí)從原點(diǎn)出發(fā),動(dòng)點(diǎn)A每秒運(yùn)動(dòng)x個(gè)單位,動(dòng)點(diǎn)B每秒運(yùn)動(dòng)y個(gè)單位,且動(dòng)點(diǎn)A運(yùn)動(dòng)到的位置對(duì)應(yīng)的數(shù)記為a,動(dòng)點(diǎn)B運(yùn)動(dòng)到的位置對(duì)應(yīng)的數(shù)記為b,定點(diǎn)C對(duì)應(yīng)的數(shù)為8.
(1)若2秒后,a、b滿足|a+8|+|b﹣2|=0,則x= ,y= .并請(qǐng)?jiān)跀?shù)軸上標(biāo)出A、B兩點(diǎn)的位置.
(2)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上保持原來的速度,且同時(shí)向正方向運(yùn)動(dòng)z秒后使得|a|=|b|,使得z= .
(3)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上都以每秒2個(gè)單位向正方向運(yùn)動(dòng)繼續(xù)運(yùn)動(dòng)t秒,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離為AB,且AC+BC=1.5AB,則t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=,點(diǎn)P在AC上運(yùn)動(dòng),點(diǎn)D在AB上,PD始終保持與PA相等,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.若AC=6,BC=8,PA=2,則線段DE的長為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.
組別 | 正確字?jǐn)?shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息完成下列問題:
(1)統(tǒng)計(jì)表中的m= ,n= ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中“C組”所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)已知該校共有900名學(xué)生,如果聽寫正確的字的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)該校本次聽寫比賽不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AD=3,DC=4,動(dòng)點(diǎn)P在線段DC上以每秒1個(gè)單位的速度從點(diǎn)D向點(diǎn)C運(yùn)動(dòng),過點(diǎn)P作PQ∥AC交AD于Q,將△PDQ沿PQ翻折得到△PQE. 設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)E落在邊AB上時(shí),t的值為 ;
(2)設(shè)△PQE與△ADC重疊部分的面積為s,求s與t的函數(shù)關(guān)系式;
(3)如圖2,以PE為直徑作⊙O.當(dāng)⊙O與AC邊相切時(shí),求CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘職員,對(duì)甲、乙兩位候選人進(jìn)行了面試,面試中包括形體、口才、專業(yè)知識(shí),他們的成績(百分制)如下表:
(1)如果公司根據(jù)經(jīng)營性質(zhì)和崗位要求,以面試成績中形體、口才、專業(yè)知識(shí)按照的比值確定成績,請(qǐng)計(jì)算甲、乙兩人各自的平均成績,看看誰將被錄取?
(2)如果公司根據(jù)經(jīng)營性質(zhì)和崗位要求,以面試成績中形體占,口才占,專業(yè)知識(shí)占確定成績,那么你認(rèn)為該公司應(yīng)該錄取誰?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于兩點(diǎn),拋物線經(jīng)過兩點(diǎn),與軸交于另一點(diǎn).
(1)求拋物線解析式及點(diǎn)坐標(biāo);
(2)連接,求的面積;
(3)若點(diǎn)為拋物線上一動(dòng)點(diǎn),連接,當(dāng)點(diǎn)運(yùn)動(dòng)到某一位置時(shí),面積為的面積的倍,求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有兩點(diǎn)A、B,點(diǎn)B在點(diǎn)A的右側(cè),且AB=10,點(diǎn)A表示的數(shù)為﹣6.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng).
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù);
(2)經(jīng)過多少時(shí)間,線段AP和BP的長度之和為18?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形的頂點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,建立平面直角坐標(biāo)系.已知,,,點(diǎn)為軸上一動(dòng)點(diǎn),以為一邊在右側(cè)作正方形.
(1)若點(diǎn)與點(diǎn)重合,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
(2)若點(diǎn)在的延長線上,且,求點(diǎn)的坐標(biāo).
(3)若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com