【題目】某公司招聘職員,對甲、乙兩位候選人進(jìn)行了面試,面試中包括形體、口才、專業(yè)知識,他們的成績(百分制)如下表:

1)如果公司根據(jù)經(jīng)營性質(zhì)和崗位要求,以面試成績中形體、口才、專業(yè)知識按照的比值確定成績,請計算甲、乙兩人各自的平均成績,看看誰將被錄。

2)如果公司根據(jù)經(jīng)營性質(zhì)和崗位要求,以面試成績中形體占,口才占,專業(yè)知識占確定成績,那么你認(rèn)為該公司應(yīng)該錄取誰?

【答案】1)甲將被錄。唬2)公司錄取乙.

【解析】

(1)由形體、口才、專業(yè)知識按照的比確定,根據(jù)加權(quán)平均數(shù)的計算方法分別計算不同權(quán)的平均數(shù),比較即可,
(2)由面試成績中形體占,口才占,筆試成績中專業(yè)知識占, ,根據(jù)加權(quán)平均數(shù)的計算方法分別計算不同權(quán)的平均數(shù),比較即可.

解:(1)甲的平均成績:,

乙的平均成績:

,

所以,甲將被錄;

2)甲的平均成績:

乙的平均成績:,

所以,公司錄取乙.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時間情況,隨機(jī)調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時間x單位:小時進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計圖:

根據(jù)圖中提供的信息,解答下列問題:

1補(bǔ)全頻數(shù)分布直方圖

2求扇形統(tǒng)計圖中m的值和E組對應(yīng)的圓心角度數(shù)

3請估計該校3000名學(xué)生中每周的課外閱讀時間不小于6小時的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,D是BC邊上一點,∠ADC=3∠BAD,BD=8,DC=7,則AB的值為( )

A. 15 B. 20 C. 2+7 D. 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的括號內(nèi):

+5+,0.31,0,-1.3,62.6-8.3,,7,100

1)正整數(shù):(

2)分?jǐn)?shù):(

3)非負(fù)數(shù):(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形ABCD中,ABCD,D=90°,BE平分∠ABC,交CD于點E,F(xiàn)AB的中點,聯(lián)結(jié)AE、EF,且AEBE.

求證:(1)四邊形BCEF是菱形;

(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸的單位長度為1

1)如果點AD表示的數(shù)互為相反數(shù),那么點B表示的數(shù)是多少?

2)當(dāng)點B為原點時,若存在一點MA點的距離是點MD點的距離的2倍,則點M所表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校中午學(xué)生用餐比較擁擠,為建議學(xué)校分年級錯時用餐,李老師帶領(lǐng)數(shù)學(xué)學(xué)習(xí)小組在某天隨機(jī)調(diào)查了部分學(xué)生,統(tǒng)計了他們從下課到就餐結(jié)束所用的時間,并繪制成統(tǒng)計表和如圖所示的不完整統(tǒng)計圖.

根據(jù)以上提供的信息,解答下列問題:

1)表中a=_____,b=_____c=_____,補(bǔ)全頻數(shù)分布直方圖;

2)此次調(diào)查中,中位數(shù)所在的時間段是_____min

時間分段/min

頻(人)數(shù)

百分比

10≤x<15

8

20%

15≤x<20

14

a

20≤x<25

10

25%

25≤x<30

b

12.50%

30≤x<35

3

7.50%

合計

c

100%

3)這所學(xué)校共有1200人,試估算從下課到就餐結(jié)束所用時間不少于20min的共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:

①若a+b+c=0,則b2﹣4ac>0;

②若方程兩根為﹣12,則2a+c=0;

③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;

④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案