【題目】一次函數(shù)y=x的圖象如圖所示,它與二次函數(shù)y=ax2-4ax+c的圖象交于A、B兩點(其中點A在點B的左側(cè)),與這個二次函數(shù)圖象的對稱軸交于點C.
(1)求點C的坐標;
(2)設(shè)二次函數(shù)圖象的頂點為D.
①若點D與點C關(guān)于x軸對稱,且△ACD的面積等于3,求此二次函數(shù)的關(guān)系式;
②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關(guān)系式.
【答案】(1)點C(2, );(2)①y=x2-x; ②y=-x2+2x+.
【解析】試題分析:(1)求得二次函數(shù)y=ax2-4ax+c對稱軸為直線x=2,把x=2代入y=x求得y=,即可得點C的坐標;(2)①根據(jù)點D與點C關(guān)于x軸對稱即可得點D的坐標,并且求得CD的長,設(shè)A(m, m) ,根據(jù)S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax2-4ax+c得方程組,解得a、c的值即可得二次函數(shù)的表達式.②設(shè)A(m, m)(m<2),過點A作AE⊥CD于E,則AE=2-m,CE=-m,
根據(jù)勾股定理用m表示出AC的長,根據(jù)△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax2-4ax+c即可求得函數(shù)表達式.
試題解析:(1)y=ax2-4ax+c=a(x-2)2-4a+c.∴二次函數(shù)圖像的對稱軸為直線x=2.
當x=2時,y=x=,∴C(2, ).
(2)①∵點D與點C關(guān)于x軸對稱,∴D(2,- ),∴CD=3.
設(shè)A(m, m) (m<2),由S△ACD=3,得×3×(2-m)=3,解得m=0,∴A(0,0).
由A(0,0)、 D(2,- )得解得a=,c=0.
∴y=x2-x.
②設(shè)A(m, m)(m<2),過點A作AE⊥CD于E,則AE=2-m,CE=-m,
AC==(2-m),
∵CD=AC,∴CD=(2-m).
由S△ACD=10得×(2-m)2=10,解得m=-2或m=6(舍去),∴m=-2.
∴A(-2,- ),CD=5.
若a>0,則點D在點C下方,∴D(2,- ),
由A(-2,- )、D(2,- )得解得
∴y=x2-x-3.
若a<0,則點D在點C上方,∴D(2, ),
由A(-2,- )、D(2, )得解得
∴y=-x2+2x+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角,,點是邊上的一點,以為邊作,使,.
(1)過點作交于點,連接(如圖①)
①請直接寫出與的數(shù)量關(guān)系;
②試判斷四邊形的形狀,并證明;
(2)若,過點作交于點,連接(如圖②),那么(1)②中的結(jié)論是否任然成立?若成立,請給出證明,若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,則四邊形CODE的周長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點F,點點F作DE∥BC,交AB于點D,交AC于點E。若BD=3,DE=5,則線段EC的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標有數(shù)字1和-2;乙袋中有三個完全相同的小球,分別標有數(shù)字-1、0和2.小麗先從甲袋中隨機取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機取出一個小球,記錄下小球上的數(shù)字為y,設(shè)點P的坐標為(x,y).
(1)請用表格或樹狀圖列出點P所有可能的坐標;
(2)求點P在一次函數(shù)y=x+1圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,長方形OABC的頂點O在坐標原點,頂點A、C分別在x、y軸的正半軸上:OA=3,OC=4,D為OC邊的中點,E是OA邊上的一個動點,當△BDE的周長最小時,E點坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com