【題目】已知二次函數(shù)的圖象如圖所示,分析下列四個結(jié)論:①abc<0;②b2-4ac>0;③;④a+b+c<0.其中正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
【答案】B
【解析】
①由拋物線的開口方向,拋物線與y軸交點的位置、對稱軸即可確定a、b、c的符號,即得abc的符號;
②由拋物線與x軸有兩個交點判斷即可;
③由 ,a<0,得到b>2a,所以2a-b<0;
④由當(dāng)x=1時y<0,可得出a+b+c<0.
解:①∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),與y軸交于正半軸,
∴a<0,,c>0,
∴b<0,
∴abc>0,結(jié)論①錯誤;
②∵二次函數(shù)圖象與x軸有兩個交點,
∴b2-4ac>0,結(jié)論②正確;
③∵,a<0,
∴b>2a,
∴2a-b<0,結(jié)論③錯誤;
④∵當(dāng)x=1時,y<0;
∴a+b+c<0,結(jié)論④正確.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtΔABC,∠C=90°,AC=4cm,BC=3cm,動點M、N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A、B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,MN,設(shè)移動時間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時,ΔMCN面積為2cm?
(2)是否存在某一時刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請說明理由;
(3)當(dāng)t為何值時,以A、P、M為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明到商場購買某個牌子的鉛筆支,用了元(為整數(shù)).后來他又去商場時,發(fā)現(xiàn)這種牌子的鉛筆降階,于是他比上一次多買了支鉛筆,用了元錢,那么小明兩次共買了鉛筆________支.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點A順時針旋轉(zhuǎn)一定的角度得到△AED,點B、C的對應(yīng)點分別是E、D.
(1)如圖1,當(dāng)點E恰好在AC上時,求∠CDE的度數(shù);
(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)已知AB=4,AE=3.求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABO,點B在軸上,∠ABO=90°,∠AOB=30°,OB=,反比例函數(shù)的圖象經(jīng)過OA的中點C,交AB于點D.
(1)求反比例函數(shù)的表達(dá)式;
(2)求△OCD的面積;
(3)點P是軸上的一個動點,請直接寫出使△OCP為直角三角形的點P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.
【1】從A、D、E、F四點中任意取一點,以所取的這一點及B、C為頂點三角形,則所畫三角形是等腰三角形的概率是 ▲ ;
【2】從A、D、E、F四點中先后任意取兩個不同的點,以所取的這兩點及B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率(用樹狀圖或列表求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】傳統(tǒng)的端午節(jié)即將來臨,某企業(yè)接到一批粽子生產(chǎn)任務(wù),約定這批粽子的出廠價為每只4元,按要求在20天內(nèi)完成.為了按時完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,y與x滿足如下關(guān)系:
y=
(1)李明第幾天生產(chǎn)的粽子數(shù)量為280只?
(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,p與x之間的關(guān)系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達(dá)式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①拋物線y=ax2+bx+4(a≠0)與x軸,y軸分別交于點A(﹣1,0),B(4,0),點C三點.
(1)試求拋物線的解析式;
(2)點D(3,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標(biāo);如果不存在,請說明理由;
(3)點N在拋物線的對稱軸上,點M在拋物線上,當(dāng)以M、N、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com