【題目】如圖1,在四邊形中,∥,,直線.當(dāng)直線沿射線方向,從點(diǎn)開始向右平移時(shí),直線與四邊形的邊分別相交于點(diǎn)、.設(shè)直線向右平移的距離為,線段的長(zhǎng)為,且與的函數(shù)關(guān)系如圖2所示,則四邊形的周長(zhǎng)是_____.
【答案】
【解析】
根據(jù)圖1直線l的平移過(guò)程分為三段,當(dāng)F與A重合之前,x與y都不斷增大,當(dāng)當(dāng)F與A重合之后到點(diǎn)E與點(diǎn)C重合之前,x增加y不變,E與點(diǎn)C重合后繼續(xù)運(yùn)動(dòng)至F與D重合x增加y減小.結(jié)合圖2可知BC=5,AD=7-4=3,由且∠B=30°可知AB=,當(dāng)F與A重合時(shí),把CD平移到E點(diǎn)位置可得三角形AED′為正三角形,可得CD=2,進(jìn)而可求得周長(zhǎng).
由題意和圖像易知BC=5,AD=7-4=3
當(dāng)BE=4時(shí)(即F與A重合),EF=2
又∵且∠B=30°
∴AB=,
∵當(dāng)F與A重合時(shí),把CD平移到E點(diǎn)位置可得三角形AED′為正三角形
∴CD=2
∴AB+BC+CD+AD=+5+2+3=10+
故答案時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,真線與軸,軸分別交于、兩點(diǎn),為等腰直角三角形,且.若點(diǎn)恰好落在函數(shù)()在第二象限內(nèi)的圖象上,則的值為( )
A.-1B.-2C.-3D.-4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)兩點(diǎn),且與y軸交于點(diǎn)C.
(1)求拋物線的表達(dá)式;
(2)如圖①,在拋物線的對(duì)稱軸上尋找一點(diǎn)M,使得△ACM的周長(zhǎng)最小,求點(diǎn)M的坐標(biāo).
(3)如圖②,用寬為4個(gè)單位長(zhǎng)度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P,Q兩點(diǎn)(點(diǎn)P在點(diǎn)Q的左側(cè)),連接PQ,在線段PQ上方拋物線上有一動(dòng)點(diǎn)D,連接DP,DQ.若點(diǎn)P的橫坐標(biāo)為,求△DPQ面積的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
(1)當(dāng)銷售單價(jià)為70元時(shí),每天的銷售利潤(rùn)是多少?
(2)求出每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)如果該企業(yè)每天的總成本不超過(guò)7000元,那么銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)是否存在點(diǎn)P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,直線AB與CD的延長(zhǎng)線相交于點(diǎn)A,AB2=ADAC,OE∥BD交直線AB于點(diǎn)E,OE與BC相交于點(diǎn)F.
(1)求證:直線AE是⊙O的切線;
(2)若⊙O的半徑為3,cosA=,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步促進(jìn)“美麗校園”創(chuàng)建工作,某校團(tuán)委計(jì)劃對(duì)八年級(jí)五個(gè)班的文化建設(shè)進(jìn)行檢查,每天隨機(jī)抽查一個(gè)班級(jí),第一天從五個(gè)班級(jí)隨機(jī)抽取一個(gè)進(jìn)行檢查,第二天從剩余的四個(gè)班級(jí)再隨機(jī)抽取一個(gè)進(jìn)行檢查,第三天從剩余的三個(gè)班級(jí)再隨機(jī)抽取一個(gè)進(jìn)行檢查…,以此類推,直到檢查完五個(gè)班級(jí)為止,且每個(gè)班級(jí)被選中的機(jī)會(huì)均等
(1)第一天,八(1)班沒(méi)有被選中的概率是 ;
(2)利用網(wǎng)狀圖或列表的方法,求前兩天八(1)班被選中的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校門口豎著“前方學(xué)校,減速慢行”的交通指示牌CD,數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)將“測(cè)量交通指示牌CD的高度”作為一項(xiàng)課題活動(dòng),他們定好了如下測(cè)量方案:
項(xiàng)目 | 內(nèi)容 |
課題 | 測(cè)量交通指示牌CD的高度 |
測(cè)量示意圖 | |
測(cè)量步驟 | (1)從交通指示牌下的點(diǎn)M處出發(fā)向前走10 米到達(dá)A處; (2)在點(diǎn)A處用量角儀測(cè)得∠DAM=27°; (3)從點(diǎn)A沿直線MA向前走10米到達(dá)B處;(4)在點(diǎn)B處用量角儀測(cè)得∠CBA=18°. |
請(qǐng)你幫助該小組同學(xué)根據(jù)上表中的測(cè)量數(shù)據(jù),求出交通指示牌CD的高度.(參考數(shù)據(jù)sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖拋物線y=ax2+bx+c的圖象交x軸于A(﹣2,0)和點(diǎn)B,交y軸負(fù)半軸于點(diǎn)C,且OB=OC,下列結(jié)論:①;②;③;④.其中正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com