【題目】一位同學(xué)拿了兩塊45°的三角尺△MNK,△ACB做了一個(gè)探究活動(dòng):將△MNK的直角頂點(diǎn)M放在△ABC的斜邊AB的中點(diǎn)處,設(shè)AC=BC=a.

(1)如圖1,兩個(gè)三角尺的重疊部分為△ACM,則重疊部分的面積為 , 周長(zhǎng)為;
(2)將圖1中的△MNK繞頂點(diǎn)M逆時(shí)針旋轉(zhuǎn)45°,得到圖2,此時(shí)重疊部分的面積為 , 周長(zhǎng)為;
(3)如果將△MNK繞M旋轉(zhuǎn)到不同于圖1,圖2的位置,如圖3所示,猜想此時(shí)重疊部分的面積為多少?并試著加以驗(yàn)證.

【答案】
(1);(1+ )a
(2)a2;2a
(3)

解:猜想:重疊部分的面積為

理由如下:

過(guò)點(diǎn)M分別作AC、BC的垂線MH、MG,垂足為H、G

設(shè)MN與AC的交點(diǎn)為E,MK與BC的交點(diǎn)為F

∵M(jìn)是△ABC斜邊AB的中點(diǎn),AC=BC=a

∴MH=MG=

又∵∠HME+∠HMF=∠GMF+∠HMF,

∴∠HME=∠GMF,

∴Rt△MHE≌Rt△MGF

∴陰影部分的面積等于正方形CGMH的面積

∵正方形CGMH的面積是MGMH= × =

∴陰影部分的面積是


【解析】解:(1)∵AM=MC= AC= a,則
∴重疊部分的面積是△ACB的面積的一半為 a2 , 周長(zhǎng)為(1+ )a.(2)∵重疊部分是正方形
∴邊長(zhǎng)為 a,面積為 a2 , 周長(zhǎng)為2a.
(1)由等腰直角三角形的性質(zhì):底邊上的中線與底邊上的高重合,得到△AMC是等腰直角三角形,AM=MC= AC= a,則重疊部分的面積是△ACB的面積的一半,為 a2 , 周長(zhǎng)為(1+ )a.(2)易得重疊部分是正方形,邊長(zhǎng)為 a,面積為 a2 , 周長(zhǎng)為2a.(3)過(guò)點(diǎn)M分別作AC、BC的垂線MH、MG,垂足為H、G.求得Rt△MHE≌Rt△MGF,則陰影部分的面積等于正方形CGMH的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到位置①可得到點(diǎn)P1 , 此時(shí)AP1= ;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②可得到點(diǎn)P2 , 此時(shí)AP2= +1;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③可得到點(diǎn)P3時(shí),AP3= +2…按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點(diǎn)P2026為止,則AP2016=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)半圓形橋洞截面示意圖,圓心為O,直徑AB是河底線,弦CD是水位線,CD∥AB,且AB=26m,OE⊥CD于點(diǎn)E.水位正常時(shí)測(cè)得OE:CD=5:24

(1)求CD的長(zhǎng);
(2)現(xiàn)汛期來(lái)臨,水面要以每小時(shí)4m的速度上升,則經(jīng)過(guò)多長(zhǎng)時(shí)間橋洞會(huì)剛剛被灌滿?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BC相交于點(diǎn)N,連接BM,DN.

(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在RtABC中,∠C=90°,BC=6cm,AC=8 cm,AB=10 cm. 現(xiàn)有一動(dòng)點(diǎn)P,從A點(diǎn)出發(fā),沿著三角形的邊AC-CB-BA運(yùn)動(dòng),回到A點(diǎn)停止,速度為1 cm/s,設(shè)運(yùn)動(dòng)時(shí)間為t s.

(1)當(dāng)t=_______時(shí),ABC的周長(zhǎng)被線段AP平分為相等的兩部分.

(2)當(dāng)t=_______時(shí),APC的面積等于ABC面積的一半.

(3)還有一個(gè)DEF,E=90°,如圖所示,DE=4cm,DF=5cm,D=A. ABC的邊上,若另外有一個(gè)動(dòng)點(diǎn)Q,與P 同時(shí)從A點(diǎn)出發(fā),沿著邊AB-BC-CA運(yùn)動(dòng),回到點(diǎn)A停止. 在兩點(diǎn)運(yùn)動(dòng)過(guò)程中某一時(shí)刻,恰好APQDEF全等,則點(diǎn)Q的運(yùn)動(dòng)速度 cm/s.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:
①AC=AD;②BD⊥AC;③四邊形ACED是菱形.
其中正確的個(gè)數(shù)是(

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市近郊有一塊長(zhǎng)為60米,寬為50米的矩形荒地,地方政府準(zhǔn)備在此建一個(gè)綜合性休閑廣場(chǎng),其中陰影部分為通道,通道的寬度均相等,中間的三個(gè)矩形(其中三個(gè)矩形的一邊長(zhǎng)均為a米)區(qū)域?qū)佋O(shè)塑膠地面作為運(yùn)動(dòng)場(chǎng)地.

(1)設(shè)通道的寬度為x米,則a=(用含x的代數(shù)式表示);
(2)若塑膠運(yùn)動(dòng)場(chǎng)地總占地面積為2430平方米.請(qǐng)問(wèn)通道的寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=5,PB=12,PC=13,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,ADBE相交于點(diǎn)F,且AE=CD.

(1)求證:AD=BE;

(2)求∠BFD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案