【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,ABAD,C120°,點E在上.

(1)求∠AED的度數(shù);

(2)若⊙O的半徑為2,則的長為多少?

(3)連接OD,OE,當(dāng)∠DOE90°時,AE恰好是⊙O內(nèi)接正n邊形的一邊,求n的值.

【答案】(1) 120°;(2);(3)12

【解析】試題分析:(1)連接AC,AB=AD可得到∠ACB=ACD=60°,在四邊形ACBE中由對角互補可求得∠AEB,(2)因為 ∠AOD=2ABD=120°,半斤為2,根據(jù)弧長公式即可求解.

3)連接OA,求出∠AOE的度數(shù)即可求出正n邊形的邊數(shù).

連接BD,∵四邊形ABCD O的內(nèi)接四邊形,

∴∠BAD+C=180°,

∵∠C=120°,

∴∠BAD=60°,

AB=AD,

∴△ABD是等邊三角形,

∴∠ABD=60°,

∵四邊形ABDE O的內(nèi)接四邊形,

∴∠AED+ABD=180°,

∴∠AED=120°,

(2) ∵∠AOD=2ABD=120°,

∴弧AD的長=,

(3)連接OA,

∵∠ABD=60°,

∴∠AOD=2ABD=120°,

∵∠DOE=90°,

∴∠AOE=AOD-DOE=30°,

n=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線軸交于O點、A點,B為拋物線上一點,Cy軸上一點,連接BC,且BC//OA,已知點O(0,0),A(6,0),B(3,m),AB=.

(1)求B點坐標(biāo)及拋物線的解析式.,

(2)MCB上一點,過點My軸的平行線交拋物線于點E,求DE的最大值;

(3)坐標(biāo)平面內(nèi)是否存在一點F,使得以C、B、D、F為頂點的四邊形是菱形?若存在,求出符合條件的點F坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°

1)求證:四邊形AECF是菱形;

2)若∠B=30°,BC=10,求菱形AECF面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點、在線段上,且,點是線段的中點,點是線段上的一點,且

1)若點是線段的中點,求的長;

2)若點是線段的三等分點,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的對角線,相交于點

(1)如圖1,分別是,上的點,的延長線相交于點.若,求證:;

(2)如圖2,上的點,過點,交線段于點,連結(jié)于點,交于點.若

求證:;

當(dāng)時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BE2,AD8DE平分∠ADC,則平行四邊形的周長為(  )

A. 14B. 24C. 20D. 28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時拋擲兩枚質(zhì)地均勻的骰子,骰子的六個面分別刻有1到6的點數(shù),朝上的面的點數(shù)中,一個點數(shù)能被另一個點數(shù)整除的概率是 

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知一次函數(shù)的圖象與軸,軸分別交于點,.為邊在第一象限內(nèi)作等腰,且.軸于點.的垂直平分線于點,交軸于點.

1)求點的坐標(biāo);

2)連接,判定四邊形的形狀,并說明理由;

3)在直線上有一點,使得,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC為等邊三角形,點D為直線BC上一動點(點D不與B,C重合),以AD為邊作菱形ADEF(A,D,E,F(xiàn)按逆時針排列),使∠DAF=60°,直線EF與直線BC交于H.

(1)如圖①,當(dāng)點D在邊BC上時,試說明:

(2)如圖②,當(dāng)點D在邊BC的延長線上且其他條件不變時,結(jié)論;是否成立?若成立,請說明理由;若不成立,請寫出AD、DH、AC之間存在的數(shù)量關(guān)系;

(3)如圖③,當(dāng)點D在邊CB的延長線上且其他條件不變時,補全圖形,并直接寫出AD、DH、AC之間存在的數(shù)量關(guān)系.

1 2 3

查看答案和解析>>

同步練習(xí)冊答案