【題目】甲、乙、丙、丁四名射擊選手,在相同條件下各射靶10次,他們的成績統(tǒng)計(jì)如下表所示,

若要從他們中挑選一位成績最高且波動(dòng)較小的選手參加射擊比賽,那么一般應(yīng)選(

平均數(shù)(環(huán))

9

9.5

9

9.5

方差

3.5

4

4

5.4

A. B. C. D.

【答案】B

【解析】∵乙、丁的平均數(shù)都是9.5,乙的方差是4,丁的方差是5.4,

S2> S2,

∴射擊成績最高且波動(dòng)較小的選手是乙;

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(
A.(a23=a5
B.a3a=a4
C.(3ab)2=6a2b2
D.a6÷a3=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DM、EN分別垂直平分ACBC,交ABM、N,

1)若CMN的周長為21cm,求AB的長;

2)若MCN=50°,求ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在今年我市初中學(xué)業(yè)水平考試體育學(xué)科的女子800米耐力測試中,某考點(diǎn)同時(shí)起跑的小瑩和小梅所跑的路程S(米)與所用時(shí)間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,下列說法正確的是(

A.小瑩的速度隨時(shí)間的增大而增大

B.小梅的平均速度比小瑩的平均速度大

C.在起跑后180秒時(shí),兩人相遇

D.在起跑后50秒時(shí),小梅在小瑩的前面

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】挑戰(zhàn)自我!
下圖是由一些火柴棒搭成的圖案:

(1)擺第①個(gè)圖案用根火柴棒,
擺第②個(gè)圖案用根火柴棒,
擺第③個(gè)圖案用根火柴棒.
(2)按照這種方式擺下去,擺第n個(gè)圖案用多少根火柴棒?
(3)計(jì)算一下擺121根火柴棒時(shí),是第幾個(gè)圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】次函數(shù)y=x2﹣2x+4化為y=a(x﹣h)2+k的形式,下列正確的是(
A.y=(x﹣1)2+2
B.y=(x﹣1)2+3
C.y=(x﹣2)2+2
D.y=(x﹣2)2+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2=(1+2.善于思考的小明進(jìn)行了以下探索:

設(shè)a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn

a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n2,用含m、n的式子分別表示a、b,得:a= ,b= ;

(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: ;

(3)若a+4=(m+n2,且a、m、n均為正整數(shù),求a的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,點(diǎn)F是BC延長線上一點(diǎn),以CF為邊,作菱形CDEF,使菱形CDEF與點(diǎn)A在BC的同側(cè),連結(jié)BE,點(diǎn)G是BE的中點(diǎn),連結(jié)AG、DG.

(1)如圖,當(dāng)BAC=DCF=90°時(shí),已知AC=3,CD=2,求AG的長度;

(2)如圖,當(dāng)BAC=DCF=60°時(shí),AG與DG有怎樣的位置和數(shù)量關(guān)系,并證明;

(3)當(dāng)BAC=DCF=α時(shí),試探究AG與DG的位置和數(shù)量關(guān)系(數(shù)量關(guān)系用含α的式子表達(dá)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列要求,解答相關(guān)問題.

(1)請補(bǔ)全以下求不等式﹣2x2﹣4x0的解集的過程.

①構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標(biāo)系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).

②求得界點(diǎn),標(biāo)示所需,當(dāng)y=0時(shí),求得方程﹣2x2﹣4x=0的解為 ;并用鋸齒線標(biāo)示出函數(shù)y=﹣2x2﹣4x圖象中y0的部分.

③借助圖象,寫出解集:由所標(biāo)示圖象,可得不等式﹣2x2﹣4x0的解集為﹣2x0.請你利用上面求一元一次不等式解集的過程,求不等式x2﹣2x+14的解集.

查看答案和解析>>

同步練習(xí)冊答案