如圖,直線EF,CD相交于點O,∠AOB=90°,且OD平分∠AOF,∠BOE=2∠AOE,求∠EOD的度數(shù).
考點:垂線,對頂角、鄰補角
專題:
分析:利用垂線的定義,以及∠BOE=2∠AOE,得出∠AOE=30°,再利用角平分線的性質(zhì)得出答案.
解答:解:∵∠AOB=90°,∠BOE=2∠AOE,
∴∠AOE=30°,
∴∠AOF=150°,
∵OD平分∠AOF,
∴∠AOD=75°,
∴∠EOD=105°.
點評:此題主要考查了垂線的定義以及鄰補角定義,得出∠AOE的度數(shù)是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

小王在一塊一邊靠墻,長為8米,寬為5米的矩形小花園周圍栽種了一種花作修飾,如圖所示,這塊花園的邊框?qū)挒?0厘米,內(nèi)外邊框所圈的兩個矩形相似嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC沿DE折疊后,點A落在BC邊上的點A′處,且DE∥BC,∠B=50°,則∠BDA′=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,是一條高速公路的隧道口在平面直角坐標系上的示意圖,點A 和A1、點B和B1分別關于y軸對稱,隧道拱部分BCB1為一條拋物線,最高點C離路面AA1的距離為8m,點B離路面為6m,隧道的寬度AA1為16m;
(1)求圖中拋物線對應的函數(shù)解析式;
(2)現(xiàn)有一輛大型運貨汽車,裝載大型設備后,寬為4m,大型設備與路面距離均為7m,這輛裝有大型設備的汽車能否安全通過此隧道?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知函數(shù)y=m•xm2+m,m2+m是不大于2的正整數(shù),m取何值時,它的圖象開口向上?當x取何值時,y隨x的增大而增大?當x取何值時,y隨x的增大而減少?當x取何值時,函數(shù)有最小值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

任意△ABC中,∠B=2∠C,∠A、∠B、∠C對應邊為a、b、c.求證:b2=c(a+c).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算下列各式,并且把結果化成只含有正整數(shù)指數(shù)冪的形式:
(1)(-
3
2
xy)-3÷(
5
2
x2y3-2;
(2)(3m2n-22•(-4mn-3-3;
(3)(
2
3
xy)-2÷(
1
3
x-2);
(4)(
c2
a2b
2•(
b2c
a4
)÷(-
b2
ca2
-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

分解因式:60×3.52-120×3.5×1.5+60×1.52

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,矩形ABCO的面積為15,邊OA比OC大2.E為BC的中點,以OE為直徑的⊙O′交x軸于D點,過點D作DF⊥AE于點F.
(1)求OA、OC的長;
(2)求證:DF為⊙O′的切線;
(3)直線BC上存不存在除點E以外的點P,使△AOP也是等腰三角形?如果不存在,說明理由;如果存在,直接寫出P點的坐標.

查看答案和解析>>

同步練習冊答案