【題目】已知在平面直角坐標系中點A(a,b),點B(a,0)的坐標滿足|a-b|+(a-4)2=0
(1)求點A、點B的坐標;
(2)已知點C(0,b),點P從B點出發(fā)沿x軸負方向以1個單位每秒的速度移動,同時,點Q從C點出發(fā),沿y軸負方向以1.5個單位每秒的速度移動.某一時刻,如圖①所示,且S陰=S四邊形OCAB,求點P移動的時間;
(3)在(2)的條件和結論下,如圖②所示,設AQ交軸于點M,作∠ACO、∠AMB的角平分線交于點N,求此時的值.
【答案】(1)A(4,6),B(4,0);(2)6;(3).
【解析】
(1)根據(jù)非負數(shù)的性質(zhì),根據(jù)方程組即可解決問題;
(2)設點P的運動時間為t秒.則BP=t,CQ=1.5t,QH=AC=4,AH=CQ=1.5t,根據(jù)S陰=S△APB+S矩形OBHQ-S△AQH,構建方程即可解決問題;
(3)由(2)可知,BP=t=6=AB,推出△ABP為等腰直角三角形,推出∠APB=45°,由CN平分∠ACQ,MN平分∠AMB,推出∠ACN=×90°=45°,∠BMN=∠AMB,推出∠APB=∠ACN=45°,過點N作NG∥AC,則∠CNG=∠ACN=45°=∠APB,可得∠GNM=∠NMB=∠AMB,推出∠CNM-∠APB=∠CNM-45°=∠CNM-∠CNG=∠GNM=∠NMB=∠AMB,即可得出結論.
(1)∵|a-b|+(a-4)2=0
∴|a-b|≥0,(a-4)2≥0,
∴,
解得,
∴A(4,6),B(4,0).
(2)由(1)可知,C(0,6),四邊形OCAB是矩形,AC=4,AB=6,
過點Q作QH⊥AB于H.
設點P的運動時間為t秒.則BP=t,CQ=1.5t,QH=AC=4,AH=CQ=1.5t,
S陰=S△APB+S矩形OBHQ-S△AQH
=×6t+4(1.5t-6)-×4×1.5t
=6t-24,
∵S陰=S四邊形OCAB,
∴6t-24=×4×6,
∴t=6.
(3)由(2)可知,BP=t=6=AB,
∴△ABP為等腰直角三角形,
∴∠APB=45°,
∵CN平分∠ACQ,MN平分∠AMB,
∴∠CN=×90°=45°,∠BMN=∠AMB,
∴∠APB=∠ACN=45°,
過點N作NG∥AC,則∠CNG=∠ACN=45°=∠APB
∵AC∥x軸,NG∥x軸,
∴∠GNM=∠NMB=∠AMB,
∴∠CNM-∠APB=∠CNM-45°=∠CNM-∠CNG=∠GNM=∠NMB=∠AMB,
∴=.
科目:初中數(shù)學 來源: 題型:
【題目】李紅在學校的研究性學習小組中負責了解初一年級200名女生擲實心球的測試成績.她從中隨機調(diào)查了若干名女生的測試成績(單位:米),并將統(tǒng)計結果繪制成了如下的統(tǒng)計圖表(內(nèi)容不完整).
測試成績 | 合計 | |||||
頻數(shù) | 3 | 27 | 9 | m | 1 | n |
請你結合圖表中所提供的信息,回答下列問題:
(1)表中m= ,n= ;
(2)請補全頻數(shù)分布直方圖;
(3)在扇形統(tǒng)計圖中,這一組所占圓心角的度數(shù)為 度;
(4)如果擲實心球的成績達到6米或6米以上為優(yōu)秀,請你估計該校初一年級女生擲實心球的成績達到優(yōu)秀的總人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,點O是AC上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的平分線于E,交∠BCA的外角平分線于F.
(1)請猜測OE與OF的大小關系,并說明你的理由;
(2)點O運動到何處時,四邊形AECF是矩形?寫出推理過程;
(3)點O運動到何處且△ABC滿足什么條件時,四邊形AECF是正方形?(寫出結論即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,E是BC延長線上一點,AE交CD于點G,F(xiàn)是AE上一點,并且AC=CF=EF,∠AEB=15°.
(1)求∠ACF的度數(shù);
(2)證明:矩形ABCD為正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2015年3月30日是全國中小學生安全教育日,某學校為加強學生的安全意識,組織了全校1500名學生參加安全知識競賽,從中抽取了部分學生成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計.請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題:
頻率分布表
分數(shù)段 | 頻數(shù) | 頻率 |
50.5~60.5 | 16 | 0.08 |
60.5~70.5 | 40 | 0.2 |
70.5~80.5 | 50 | 0.25 |
80.5~90.5 | m | 0.35 |
90.5~100.5 | 24 | n |
(1)這次抽取了 名學生的競賽成績進行統(tǒng)計,其中:m= ,n= ;
(2)補全頻數(shù)分布直方圖;
(3)若成績在70分以下(含70分)的學生為安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求證:AB∥CD;
(2)求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鄭老師想為希望小學四年(3)班的同學購買學習用品,了解到某商店每個書包的價格比每本詞典多8元,用124元恰好可以買到3個書包和2本詞典.
(1)每個書包和每本詞典的價格各是多少元?
(2)鄭老師有1000元,他計劃為全班40位同學每人購買一件學習用品(一個書包或一本詞典)后,余下不少于100元且不超過120元的錢購買體育用品,共有哪幾種購買書包和詞典的方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com