【題目】若一個(gè)四邊形的一條對(duì)角線把四邊形分成兩個(gè)等腰三角形,且其中一個(gè)等腰三角形的底角是另一個(gè)等腰三角形底角的2倍,我們把這條對(duì)角線叫做這個(gè)四邊形的黃金線,這個(gè)四邊形叫做黃金四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD=DC,對(duì)角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個(gè)內(nèi)角的度數(shù);
(2)如圖2,點(diǎn)B是弧AC的中點(diǎn),請(qǐng)?jiān)凇袿上找出所有的點(diǎn)D,使四邊形ABCD的對(duì)角線AC是黃金線(要求:保留作圖痕跡);
(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).
【答案】(1)108°,72°,108°,72°. (2)圖形見(jiàn)解析(3)∠BAD的度數(shù)為80°.
【解析】試題分析:(1)先由對(duì)角線AC是黃金線,可知△ABC是等腰三角形,分兩種情況討論:①AB=BC;②AC=BC.根據(jù)黃金四邊形的定義和四邊形的內(nèi)角和求解即可;
(2)①以A為圓心,AC為半徑畫(huà)弧,交圓O于D1,②以C為圓心,AC為半徑畫(huà)弧,交圓O于D2,③連接AD1,CD1,AD2,CD2.
(3)先根據(jù)∠BAC=30°,算得∠ABC=120°,再分情況討論:
i:當(dāng)AC為黃金線,則AD=CD,或AD=AC,根據(jù)等腰三角形及黃金四邊形進(jìn)行計(jì)算即可;ii:當(dāng)BD為黃金線時(shí),分三種情況:①當(dāng)AB=AD時(shí),②當(dāng)AB=BD時(shí),③當(dāng)AD=dD時(shí)。
試題解析:(1)∵在四邊形ABCD中,對(duì)角線AC是黃金線,
∴△ABC是等腰三角形,
∵AB<AC,
∴AB=BC或AC=BC,
①當(dāng)AB=BC時(shí),
∵AB=AD=DC,
∴AB=BC=AD=DC,
又∵AC=AC,
∴△ABC≌△ADC,
此種情況不符合黃金四邊形定義,
②AC=BC,
同理,BD=BC,
∴AC=BD=BC,易證得△ABD≌△DAC,△CAB≌△BDC,
∴∠DAC=∠DCA=∠ABD=∠ADB,∠BDC=∠BCD=∠CAB=∠CBA,
且∠DCA<∠DCB,
∴∠DAC<∠CAB
又由黃金四邊形定義知:∠CAB=2∠DAC,
設(shè)∠DAC=∠DCA=∠ABD=∠ADB=x°,
則∠BDC=∠BCD=∠CAB=∠CBA=2x°,
∴∠DAB=∠ADC=3x°,
而四邊形的內(nèi)角和為360°,
∴∠DAB=∠ADC=108°,∠BCD=∠CBA=72°,
答:四邊形ABCD各個(gè)內(nèi)角的度數(shù)分別為108°,72°,108°,72°.
(2)由題意作圖為:
(3)∵AB=BC,∠BAC=30°,
∴∠BCA=∠BAC=30°,∠ABC=120°,
。┊(dāng)AC為黃金線時(shí),
∴△ACD是等腰三角形,
∵AB=BC=CD,AC>BC,
∴AD=CD或AD=AC,
當(dāng)AD=CD時(shí),則AB=BC=CD=AD,
又∵AC=AC,
∴△ABC≌△ADC,
如圖3,此種情況不符合黃金四邊形定義,
∴AD≠CD,
當(dāng)AD=AC時(shí),由黃金四邊形定義知,∠ACD=∠D=15°或60°,
此時(shí)∠BAD=180°(不合題意,舍去)或90°(不合題意,舍去);
ⅱ)當(dāng)BD為黃金線時(shí),
∴△ABD是等腰三角形,
∵AB=BC=CD,
∴∠CBD=∠CDB,
①當(dāng)AB=AD時(shí),△BCD≌△BAD,
此種情況不符合黃金四邊形定義;
②當(dāng)AB=BD時(shí),AB=BD=BC=CD,
∴△BCD是等邊三角形,
∴∠CBD=60°,
∴∠A=30°或120°(不合題意,舍去),
∴∠ABC=180°(不合題意,舍去),
此種情況也不符合黃金四邊形定義;
③當(dāng)AD=BD時(shí),設(shè)∠CBD=∠CDB=y°,則∠ABD=∠BAD=(2y)°或,
∵∠ABC=∠CBD+∠ABD=120°,
當(dāng)∠ABD=2y°時(shí),y=40,
∴∠BAD=2y=80°;
當(dāng)時(shí),y=80°,
∴;
由于∠ADB=180°-40°-40°=100°,
∠BDC=80°,
∴∠ADB+∠BDC=180°,
∴此種情況不能構(gòu)成四邊形,
綜上所述:∠BAD的度數(shù)為80°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于角的說(shuō)法正確的個(gè)數(shù)是( )
①角是由兩條有公共端點(diǎn)的射線組成的圖形;②角的邊越長(zhǎng),角越大;③在角一邊延長(zhǎng)線上取一點(diǎn)D;④角可以看作由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y= 的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)直接寫(xiě)出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x=2是關(guān)于x的一元二次方程x2﹣ax=0的一個(gè)根,則a的值為( 。
A.1B.﹣1C.2D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列說(shuō)法:①電線桿可看做射線,②探照燈光線可看做射線,③A地到B地的高速公路可看做一條直線.其中正確的有( )
A. 0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將三角形各頂點(diǎn)的縱坐標(biāo)都減去5,橫坐標(biāo)保持不變,所得圖形與原圖形相比( )
A. 向上平移了5個(gè)單位B. 向下平移了5個(gè)單位
C. 向左平移了5個(gè)單位D. 向右平移了5個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后端點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著教育信息化的發(fā)展,學(xué)生的學(xué)習(xí)方式日益增多. 教師為了指導(dǎo)學(xué)生有幸效利用網(wǎng)絡(luò)進(jìn)行學(xué)習(xí),對(duì)學(xué)生進(jìn)行了隨機(jī)問(wèn)卷調(diào)查(問(wèn)卷調(diào)查表如圖所示),并用調(diào)查結(jié)果繪制了圖1、圖2兩幅統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)統(tǒng)計(jì)圖解答以下問(wèn)題:
(1)本次接受問(wèn)卷調(diào)查的學(xué)生共有 人;在扇形統(tǒng)計(jì)圖中“D”選項(xiàng)所占的百分比為 ;
(2)扇形統(tǒng)計(jì)圖中,“B”選項(xiàng)所對(duì)應(yīng)扇形圓心角為 度;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校學(xué)生課外利用網(wǎng)絡(luò)學(xué)習(xí)的時(shí)間在“A”選項(xiàng)的有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com