【題目】已知拋物線yax2+bx+3x軸交于點A(﹣1,0),B30).

1)求拋物線的解析式;

2)過點D0)作x軸的平行線交拋物線于E,F兩點,求EF長;

3)當y時,直接寫出x的取值范圍是 

【答案】1y=﹣x2+2x+3;(2EF長為2;(3

【解析】

1)把A-10),B30)代入y=ax2+bx+3,即可求解;
2)把點Dy坐標代入y=-x2+2x+3,即可求解;
3)直線EF下側的圖象符合要求.

1)把A(﹣1,0),B3,0)代入yax2+bx+3,

解得:a=﹣1,b2

拋物線的解析式為y=﹣x2+2x+3;

2)把點Dy坐標y,代入y=﹣x2+2x+3

解得:x,

EF;

3)由題意得:

y時,直接寫出x取值范圍是:

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:在四邊形 ABCD 中,∠A+∠C=180°,DB 平分∠ADC.

(1)如圖 1求證:AB=BC

(2)如圖 2,若∠ADB=60°,,試判斷△ABC 的形狀,并說明理由.

(3)如圖 3,在(2)得條件下,在 AB 上取一點 E, BC 上取一點 F,連接 CE、AF 交于點 M,連接 EF,若∠CMF=60°,AD=EF=7,CD=8(CFBF),求 AE 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形的邊長和一條對角線的長均為2 cm,則菱形的面積為( )

A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,不等邊ABC內(nèi)接于,I是其內(nèi)心,AIOI,AB2BC3,則AC的長為(

A. 4B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑的與邊BC,AC分別交于DE,DF的切線,交AC于點F

1)求證:DFAC

2)若AE4,DF3,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程(x-3)(x-2)-p2=0.

(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;

(2)設方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)已知∠MAN=135°,正方形ABCD繞點A旋轉.

1)當正方形ABCD旋轉到∠MAN的外部(頂點A除外)時,AMAN分別與正方形ABCD的邊CB,CD的延長線交于點M,N,連接MN

如圖1,若BM=DN,則線段MNBM+DN之間的數(shù)量關系是 ;

如圖2,若BM≠DN,請判斷中的數(shù)量關系是否仍成立?若成立,請給予證明;若不成立,請說明理由;

2)如圖3,當正方形ABCD旋轉到∠MAN的內(nèi)部(頂點A除外)時,AM,AN分別與直線BD交于點M,N,探究:以線段BMMN,DN的長度為三邊長的三角形是何種三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題

(1)本次調(diào)查的學生有多少人?

(2)補全上面的條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是_____;

(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程。

1)求證:方程有兩個不相等的實數(shù)根;

2)若△ABC的兩邊AB、AC的長是方程的兩個實數(shù)根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。

查看答案和解析>>

同步練習冊答案