【題目】如圖,已知:Rt△ABC中,∠ACB=90°,點E為AB上一點,AC=AE=3,BC=4,過點A作AB的垂線交射線EC于點D,延長BC交AD于點F.
(1)求CF的長;
(2)求∠D的正切值.
【答案】(1);(2).
【解析】
(1)由∠ACB=90°,AD⊥AB,易證:△ABC∽△FAC,得:,即可得到答案;
(2)過點C作CH⊥AB于點H,根據(jù)面積法,可得:CH,進(jìn)而得到:AH,EH ,根據(jù)正切三角函數(shù)的定義,即可求解.
(1)∵∠ACB=90°,
∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,
∵AD⊥AB,
∴∠BAC+∠CAF=90°,
∴∠B=∠CAF,
∴△ABC∽△FAC,
∴,即,
解得:CF;
(2)如圖,過點C作CH⊥AB于點H,則AD∥CH,即:∠D=∠ECH,
∵AC=3,BC=4,
∴AB=5,
∴CH,
∴AH,EH=AE﹣AH,
∴tanD=tan∠ECH.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y1,y2分別是關(guān)于x的函數(shù),如果函數(shù)y1和y2的圖象有交點,那么稱y1,y2為“親密函數(shù)”,交點稱為函數(shù)y1和y2的“親密點”;若兩函數(shù)圖象有兩個交點,橫坐標(biāo)分別是x1,x2,稱L=|x1﹣x2|為函數(shù)y1和y2的“親密度”,特別地,若兩函數(shù)圖象只有一個交點,則兩函數(shù)的“親密度”L=0.
(1)已知一次函數(shù)y1=2x﹣5與反比例函數(shù)y2=,請判斷函數(shù)y1和y2是否為“親密函數(shù)”,若是,請寫出“親密點”及“親密度”L,若不是,請說明理由;
(2)已知二次函數(shù)y=ax2﹣6x+c與x軸只有一個交點,與一次函數(shù)y=x﹣1的“親密度”L=3,求二次數(shù)的解析式;
(3)已知“親密函數(shù)”y1=ax﹣2和y2=的“親密度”L=0,“親密點”為P(x0,y0),將過P的拋物線y=ax2+bx+c(b>0)進(jìn)行平移,點P的對應(yīng)點為P1(1﹣m,2b﹣1),平移后的拋物線仍經(jīng)過點P,當(dāng)m≥﹣時,求平移后拋物線的頂點所能達(dá)到的最高點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點稱為整點,如圖,已知點A(0,1),B(2,0),請在所給網(wǎng)格區(qū)域(含邊界)上,按要求找到整點.
(1)畫一個直角三角形ABC,使整點C的橫坐標(biāo)與縱坐標(biāo)相等;
(2)若△PAB(不與△ABC重合)的面積等于△OAB的面積,則符合條件點整P共有 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點O,使OB=OC,以點O為圓心,OB為半徑作圓,過點C作CD∥AB交⊙O于點D,連接BD.
(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;
(2)試判斷四邊形BOCD的形狀,并證明你的判斷;
(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文化是一個國家、一個民族的靈魂,近年來,央視推出《中國詩詞大會》、《中國成語大會》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學(xué)生對這些欄目的喜愛情況,某學(xué)校組織學(xué)生會成員隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,被調(diào)查的學(xué)生必須從《經(jīng)曲詠流傳》(記為A)、《中國詩詞大會》(記為B)、《中國成語大會》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛的一個欄目,也可以寫出一個自己喜愛的其他文化欄目(記為E).根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)將條形統(tǒng)計圖補(bǔ)充完整,并求出扇形統(tǒng)計圖中“B”所在扇形圓心角的度數(shù);
(3)若選擇“E”的學(xué)生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學(xué)生中隨機(jī)選出兩名學(xué)生參加座談,請用列表法或畫樹狀圖的方法求出剛好選到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x+1與x軸,y軸分別交于點A和點B,直線l2:y=kx(k≠0)與直線l1在第一象限交于點C.若∠BOC=∠BCO,則k的值為( )
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,已知三角形ABC的邊AB是⊙O的切線,切點為B.AC經(jīng)過圓心O并與圓相交于點D、C,過C作直線CE丄AB,交AB的延長線于點E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點C在y軸正半軸上,已知點A(﹣1,0).
(1)請直接寫出點B、C的坐標(biāo):B( )、C( );并求經(jīng)過A、B、C三點的拋物線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C.此時,EF所在直線與(1)中的拋物線交于點M.
①設(shè)AE=x,當(dāng)x為何值時,△OCE∽△OBC;
②在①的條件下探究:拋物線的對稱軸上是否存在點P使△PEM是等腰三角形?若存在,請寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com