【題目】數(shù)學中,運用整體思想方法在求代數(shù)式的值中非常重要.
例如:已知:a2+2a=1,則代數(shù)式2a2+4a+4=2( a2+2a) +4=2×1+4=6.
請你根據(jù)以上材料解答以下問題:
(1)若,求的值;
(2)當時,代數(shù)式的值是5,求當時,代數(shù)式px3+qx+1的值;
(3)當時,代數(shù)式的值為m,求當時,求代數(shù)式的值是多少?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OA⊥OB,引射線OC(點C在∠AOB外),若∠BOC=α(0°<α<90°),OD平分∠BOC,OE平分∠AOD.
(1)若α=40°,求∠BOE的度數(shù);
(2)請根據(jù)∠BOC=α,請依題意補全圖形,求出∠BOE的度數(shù)(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠BAC=∠BCA,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:Rt△ABE≌ Rt△CBF;
(2)求證:AE⊥CF;
(3)若∠CAE=30°,求∠ACF度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,一次函數(shù)的圖象與直線平行,且經(jīng)過點A(1,6).
(1)求一次函數(shù)的解析式;
(2)求一次函數(shù)的圖象與坐標軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小東和小明要測量校園里的一塊四邊形場地ABCD(如圖所示)的周長,其中邊CD上有水池及建筑遮擋,沒有辦法直接測量其長度.
小東經(jīng)測量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°.
小明說根據(jù)小東所得的數(shù)據(jù)可以求出CD的長度.
你同意小明的說法嗎?若同意,請求出CD的長度;若不同意,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)若AG=7、GF=3,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD交于點O,過點B作BE⊥CD于點E,延長CD到點F,使DF=CE,連接AF.
(1)求證:四邊形ABEF是矩形;
(2)連接OF,若AB=6,DE=2,∠ADF=45°,求OF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是BC的中點,連接AE,過點E作EF⊥AE交DC于點F,連接AF.設=k,下列結(jié)論:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)當k=1時,△ABE∽△ADF,其中結(jié)論正確的是( )
A.(1)(2)(3) B.(1)(3) C.(1)(2) D.(2)(3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點.
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com