【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[m﹣1,m+1,﹣2m]的函數(shù)的一些結(jié)論,其中不正確的是( 。
A.當(dāng)m=2時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)為
B.當(dāng)m>1時(shí),函數(shù)圖象截x軸所得的線段長大于3
C.當(dāng)m<0時(shí),函數(shù)在x<時(shí),y隨x的增大而增大
D.不論m取何值,函數(shù)圖象經(jīng)過兩個(gè)定點(diǎn)
【答案】C
【解析】
A、把m=2代入[m﹣1,1+m,﹣2m],求得[a,b,c],求得解析式,利用頂點(diǎn)坐標(biāo)公式解答即可;
B、首先求得對稱軸,利用二次函數(shù)的性質(zhì)解答即可;
C、當(dāng)x大于二分之一時(shí),在對稱軸右側(cè),又開口向下,所以y隨x增大而減小正確;
D、根據(jù)特征數(shù)的特點(diǎn),直接得出x的值,進(jìn)一步驗(yàn)證即可解答.
因?yàn)楹瘮?shù)y=ax2+bx+c的特征數(shù)為[m﹣1,m+1,﹣2m];
A、當(dāng)m=2時(shí),y=x2+3x﹣4=(x+)2﹣,頂點(diǎn)坐標(biāo)是(﹣,﹣);此結(jié)論正確;
B、當(dāng)m>1時(shí),令y=0,有(m﹣1)x2+(1+m)x﹣2m=0,解得,x1=﹣1,x2=,
|x2﹣x1|=>3,所以當(dāng)m>1時(shí),函數(shù)圖象截x軸所得的線段長度大于3,此結(jié)論正確;
C、當(dāng)m<0時(shí),y=(m﹣1)x2+(1+m)x﹣2m 是一個(gè)開口向下的拋物線,其對稱軸是:x=﹣,在對稱軸的左邊y隨x的增大而增大,
因?yàn)楫?dāng)m<0時(shí),﹣=﹣=﹣﹣>﹣,即對稱軸在x=﹣右邊,可能大于,所以在x>時(shí),y隨x的增大而減小,此結(jié)論錯(cuò)誤;
D、當(dāng)x=1時(shí),y=(m﹣1)x2+(1+m)x﹣2m=0 即對任意m,函數(shù)圖象都經(jīng)過點(diǎn)(1,0),那么同樣的:當(dāng)x=﹣2時(shí),y=(m﹣1)x2+(1+m)x﹣2m=﹣6,即對任意m,函數(shù)圖象都經(jīng)過一個(gè)點(diǎn)(﹣2,﹣6),此結(jié)論正確.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形,對角線的垂直平分線分別交,和于點(diǎn),,.,的延長線交于點(diǎn),且,連接.
(1)求證:
(2)求證:平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在20天內(nèi)完成,已知每件產(chǎn)品的售價(jià)為65元,工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:y=.
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為100件?
(2)設(shè)第x天(0≤x≤20)生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)圖象如圖,工人甲第x天創(chuàng)造的利潤為W元.
①求P與x的函數(shù)關(guān)系式;
②求W與x的函數(shù)關(guān)系式,并求出第幾天時(shí),利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場新進(jìn)一批商品,每個(gè)成本價(jià)25元,銷售一段時(shí)間發(fā)現(xiàn)銷售量y(個(gè))與銷售單價(jià)x(元/個(gè))之間成一次函數(shù)關(guān)系,如下表:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若該商品的銷售單價(jià)在45元~80元之間浮動,
①銷售單價(jià)定為多少元時(shí),銷售利潤最大?此時(shí)銷售量為多少?
②商場想要在這段時(shí)間內(nèi)獲得4550元的銷售利潤,銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織全校學(xué)生進(jìn)行了一次“社會主義核心價(jià)值觀”知識競賽,賽后隨機(jī)抽取了各年級部分學(xué)生成績進(jìn)行統(tǒng)計(jì),制作如下頻數(shù)分布表和頻數(shù)分布直方圖.請根據(jù)圖表中提供的信息,解答下列問題:
分?jǐn)?shù)段(表示分?jǐn)?shù)) | 頻數(shù) | 頻率 |
4 | 0.1 | |
8 | ||
0.3 | ||
10 | 0.25 | |
6 | 0.15 |
(1)請求出該校隨機(jī)抽取了____學(xué)生成績進(jìn)行統(tǒng)計(jì);
(2)表中____,____,并補(bǔ)全直方圖;
(3)若用扇形統(tǒng)計(jì)圖描述此成績統(tǒng)計(jì)分布情況,則分?jǐn)?shù)段對應(yīng)扇形的圓心角度數(shù)是___;
(4)若該校共有學(xué)生8000人,請估計(jì)該校分?jǐn)?shù)在的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在ABCD的內(nèi)部,AF∥BE,DF∥CE.
(1)求證BCE≌ADF;
(2)若ABCD的面積為96cm2,求四邊形AEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,相交于點(diǎn)O,過點(diǎn)B作交于點(diǎn)F,交于點(diǎn)M,過點(diǎn)D作交于點(diǎn)E,交于點(diǎn)N,連接.則下列結(jié)論:
①;②;
③;④當(dāng)時(shí),四邊形是菱形.
其中,正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為正六邊形對角線的交點(diǎn),機(jī)器人置于該正六邊形的某頂點(diǎn)處.柱柱同學(xué)操控機(jī)器人以每秒個(gè)單位長度的速度在圖 1 中給出的線段路徑上運(yùn)行,柱柱同學(xué)將機(jī)器人運(yùn)行時(shí)間設(shè)為秒,機(jī)器人到點(diǎn)距離設(shè)為,得到函數(shù)圖象如圖 2.通過觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長為;②當(dāng)時(shí),機(jī)器人一定位于點(diǎn);③機(jī)器人一定經(jīng)過點(diǎn);④機(jī)器人一定經(jīng)過點(diǎn);其中正確的有_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com