【題目】如圖,ABC中,ABAC,以AB為直徑的⊙OBC相交于點D,與CA的延長線相交于點E,過點DDFAC于點F

1)證明:DF是⊙O的切線;

2)若AC3AE,FC6,求AF的長.

【答案】1)見解析;(2AF3

【解析】

1)連接OD,根據(jù)等邊對等角性質(zhì)和平行線的判定和性質(zhì)證得ODDF,從而證得DF是⊙O的切線;

2)根據(jù)圓周角定理、勾股定理得出BE=2AE,CE=4AE,然后根據(jù)勾股定理求得BE=2AE,再根據(jù)相似三角形的判定與性質(zhì),即可得到答案.

1)證明:如圖1,連接OD,

OBOD,

∴∠B=∠ODB,

ABAC,

∴∠B=∠C

∴∠ODB=∠C,

ODAC,

DFAC

ODDF,

DF是⊙O的切線;

2)解:如圖2,連接BE,AD,

AB是直徑,

∴∠AEB90°,

ABAC,AC3AE,

AB3AE,CE4AE

,

,

∵∠DFC=∠AEB90°,

DFBE,

∴△DFC∽△BEC,

,

CF6,

DF3

AB是直徑,

ADBC,

DFAC

∴∠DFC=∠ADC90°,∠DAF=∠FDC,

∴△ADF∽△DCF,

DF2AFFC,

,

AF3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O是坐標(biāo)原點,BC兩點的坐標(biāo)分別為(3,-1)、(21).

1)以O點為位似中心在y軸的左側(cè)將OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;

2B點的對應(yīng)點B′的坐標(biāo)是 ;C點的對應(yīng)點C′的坐標(biāo)是 ;

3)在BC上有一點Pxy),按(1)的方式得到的對應(yīng)點P′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點Ax軸負(fù)半軸上,頂點Bx軸正半軸上.若拋物線p=ax2-10ax+8a0)經(jīng)過點C、D,則點B的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿BC的方向運動,且DE始終經(jīng)過點A,EFAC交于M點.

(1)求證:△ABE∽△ECM;

(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;

(3)當(dāng)線段AM最短時,求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖,將繞點逆時針旋轉(zhuǎn)60°得到,交于點,可推出結(jié)論:

問題解決:如圖,在中,,.點內(nèi)一點,則點三個頂點的距離和的最小值是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PQ切⊙OE,ACPQC,交⊙OD.

(1)求證:AE平分∠BAC;

(2)AD=2,EC= ,BAC=60°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ACBC2,正方形CDEF的頂點D、F分別在ACBC邊上,設(shè)CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示yx之間的函數(shù)關(guān)系的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的內(nèi)接四邊形ABCD兩組對邊的延長線分別交于點E,F

1)若∠E+F=α,求∠A的度數(shù)(用含α的式子表示);

2)若∠E+F=60°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】I為△ABC的內(nèi)心,連AI交△ABC的外接圓于點D,若AI=2CD,點E為弦AC的中點,連接EIIC,若IC=6ID=5,則IE的長為_____

查看答案和解析>>

同步練習(xí)冊答案