如圖,△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為( 。

A.2.3    B.2.4    C.2.5    D.2.6


B【考點(diǎn)】切線的性質(zhì);勾股定理的逆定理.

【分析】首先根據(jù)題意作圖,由AB是⊙C的切線,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根據(jù)勾股定理求得AB的長(zhǎng),然后由SABC=AC•BC=AB•CD,即可求得以C為圓心與AB相切的圓的半徑的長(zhǎng).

【解答】解:在△ABC中,

∵AB=5,BC=3,AC=4,

∴AC2+BC2=32+42=52=AB2,

∴∠C=90°,

如圖:設(shè)切點(diǎn)為D,連接CD,

∵AB是⊙C的切線,

∴CD⊥AB,

∵SABC=AC•BC=AB•CD,

∴AC•BC=AB•CD,

即CD===,

∴⊙C的半徑為,

故選B.

【點(diǎn)評(píng)】此題考查了圓的切線的性質(zhì),勾股定理,以及直角三角形斜邊上的高的求解方法.此題難度不大,解題的關(guān)鍵是注意輔助線的作法與數(shù)形結(jié)合思想的應(yīng)用.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


氣溫由﹣2℃上升3℃后是( 。

A.﹣5℃       B.1℃   C.5℃   D.3℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


因式分解:9n2+1﹣6n= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠B=135°,則的長(zhǎng)  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在半徑為6cm的⊙O中,點(diǎn)A是劣弧的中點(diǎn),點(diǎn)D是優(yōu)弧上一點(diǎn),且∠D=30°,下列四個(gè)結(jié)論:

①OA⊥BC;②BC=6;③sin∠AOB=;④四邊形ABOC是菱形.

其中正確結(jié)論的序號(hào)是( 。

A.①③ B.①②③④  C.②③④     D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在x軸、y軸上,四邊形ABCO為矩形,AB=16,點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱,tan∠ACB=,∠CDE=∠CAO,點(diǎn)E、F分別是線段AD、AC上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)A、D重合),且∠CEF=∠ACB.

(1)求AC的長(zhǎng)和點(diǎn)D的坐標(biāo);

(2)證明:△AEF∽△DCE;

(3)當(dāng)△EFC為等腰三角形時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若一個(gè)多邊形的內(nèi)角和是1080度,則這個(gè)多邊形的邊數(shù)為(  )

A.6       B.7       C.8       D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,直線交x軸于A點(diǎn),交y軸于B點(diǎn),點(diǎn)C是線段AB的中點(diǎn),連接OC,然后將直線OC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)30°交x軸于點(diǎn)D,再過D點(diǎn)作直線DC1∥OC,交AB與點(diǎn)C1,然后過C1點(diǎn)繼續(xù)作直線D1C1∥OC,交x軸于點(diǎn)D1,并不斷重復(fù)以上步驟,記△OCD的面積為S1,△DC1D1的面積為S2,依此類推,后面的三角形面積分別是S3,S4…,那么S1=  ,若S=S1+S2+S3+…+Sn,當(dāng)n無限大時(shí),S的值無限接近于  

查看答案和解析>>

同步練習(xí)冊(cè)答案