【題目】如圖,在正方形ABCD中,AB=4,PBC邊上一動點(不與B,C重合),DEAPE

(1)試說明△ADE∽△PAB;

(2)若PAx,DEy,請寫出yx之間的函數(shù)關(guān)系式.

【答案】(1)說明見解析;(2)yx(4<x<4).

【解析】

(1)根據(jù)正方形的性質(zhì)以及DEAP即可判定ADE∽△PAB

(2)根據(jù)相似三角形的性質(zhì)即可列出yx之間的關(guān)系式,需要注意的是x的范圍.

解:(1)∵四邊形ABCD為正方形,

∴∠BADABC=90°,

∴∠EAD+BAP=90°,

BAP+APB=90°,

∴∠EADAPB,

又∵DEAP,AEDB=90°,

∴△ADE∽△PAB

(2)由(1)知PAB∽△ADE,

,

yx(4<x<4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.

1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.

2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點C作CDAB于點D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   

(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x2+(a+3)x+a+1=0是關(guān)于x的一元二次方程.

(1)求證:方程總有兩個不相等的實數(shù)根;

(2)若方程的兩個實數(shù)根為x1 ,x2 ,x12+x22=10,求實數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從熱氣球C上測得兩建筑物A、B底部的俯角分別為30°60度.如果這時氣球的高度CD90米.且點A、D、B在同一直線上,求建筑物AB間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙OABC的外接圓,且AB=BC=CD,ABCD,連接BD.

(1)求證:BD是⊙O的切線;

(2)若AB=10,cosBAC=,求BD的長及⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點E為AB的中點.

(1)求證:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為米,中午時不能擋光. 如圖,某舊樓的一樓窗臺高1米,要在此樓正南方米處再建一幢新樓. 已知該地區(qū)冬天中午時陽光從正南方照射,并且光線與水平線的夾角最小為°,在不違反規(guī)定的情況下,請問新建樓房最高_____________. (結(jié)果精確到1.,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,D,E分別是AC,BC邊上的點,且AD=CE,連接BD,AE相交于點F.

(1)∠BFE的度數(shù)是多少;

(2)如果,那么等于多少;

(3)如果時,請用含n的式子表示AF,BF的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊答案