安慶迎江區(qū)農(nóng)民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè),他準備用40米長的木欄圍一個矩形的養(yǎng)圈,為了節(jié)約材料,同時要使矩形面積最大,他利用了自己家房屋一面長24米的墻,設計了如圖一個矩形的養(yǎng)圈.
(1)請你求出張大伯設計的矩形養(yǎng)圈的面積.
(2)請你判斷他的設計方案是否使矩形養(yǎng)圈的面積最大?如果不是最大,應怎樣設計?請說明理由.
(1)設設計的矩形羊圈的寬為x米,則長為(40-2x)米,
則矩形羊圈的面積為:S=(40-2x)x=(40x-2x2)米2;
(2)∵S=(40x-2x2),
∴當x=-
40
2×(-2)
=10時,S最大,此時長為40-2×10=20(米),
∴他的設計方案不是最大,應設計為長為20米,寬10米.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=(x-m)2-4m2(m>0)的圖象與x軸交于A、B兩點.
(1)寫出A、B兩點的坐標(坐標用m表示);
(2)若二次函數(shù)圖象的頂點P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)在(2)的基礎上,設以AB為直徑的⊙M與y軸交于C、D兩點,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線l經(jīng)過A(3,0),B(0,3)兩點,且與二次函數(shù)y=x2+1的圖象,在第一象限內相交于點C.求:
(1)△AOC的面積;
(2)二次函數(shù)圖象的頂點與點A、B組成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店將進價為100元的某商品按120元的價格出售,可賣出300個;若商店在120元的基礎上每漲價1元,就要少賣10個,而每降價1元,就可多賣30個.
(1)求所獲利潤y(元)與售價x(元)之間的函數(shù)關系式;
(2)為獲利最大,商店應將價格定為多少元?
(3)為了讓利顧客,在利潤相同的情況下,請為商店選擇正確的出售方式,并求出此時的售價.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有一塊矩形場地,如圖所示,長為40m,寬為30m,要將這塊地劃分為四塊分別種植:A.蘭花;B.菊花;C.月季;D.牽;ǎ
(1)求出這塊場地中種植B菊花的面積y與B場地的長x之間的函數(shù)關系式;求出此函數(shù)與x軸的交點坐標,并寫出自變量的取值范圍;
(2)當x是多少時,種植菊花的面積最大,最大面積是多少?請在格點圖中畫出此函數(shù)圖象的草圖(提示:找三點描出圖象即可).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一個小服裝廠生產(chǎn)某種風衣,售價P(元/件)與月銷售量x(件)之間的關系為P=160-2x,生產(chǎn)x件的成本R=500+30x元.
(1)該廠的月產(chǎn)量為多大時,獲得的月利潤為1300元?
(2)當月產(chǎn)量為多少時,可獲得最大月利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:函數(shù)y=-
1
4
x2+x+a的圖象的最高點在x軸上.
(1)求a;
(2)如圖所示,設二次函數(shù)y=-
1
4
x2+x+a圖象與y軸的交點為A,頂點為B,P為圖象上的一點,若以線段PB為直徑的圓與直線AB相切于點B,求P點的坐標;
(3)在(2)中,若圓與x軸另一交點C關于直線PB的對稱點為M,試探索點M是否在拋物線y=-
1
4
x2+x+a上?若在拋物線上,求出M點的坐標;若不在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,用50m長的籬笆圍成中間有一道籬笆墻的養(yǎng)殖場,設它的長為xm,養(yǎng)殖場的一邊靠墻.
(1)要使養(yǎng)殖場的面積最大,養(yǎng)殖場的長應為多少米?
(2)若中間有n(n是大于1的整數(shù))道籬笆隔墻,要使養(yǎng)殖場面積最大,養(yǎng)殖場的長應為多少米?比較(1)和(2),你能得出什么結論?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y1=x2+(m+1)x+m-4與x軸交于A、B兩點(點A在點B左側),且對稱軸為x=-1.
(1)求m的值;
(2)畫出這條拋物線;
(2)若直線y2=kx+b過點B且與拋物線交于點P(-2m,-3m),根據(jù)圖象回答:當x取什么值時,y1≥y2

查看答案和解析>>

同步練習冊答案