【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=14.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t >0)秒.

(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù) (用含t的代數(shù)式表示);

(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)P、Q兩點(diǎn)相遇?

(3)MAP的中點(diǎn),NPB的中點(diǎn).點(diǎn)P在運(yùn)動(dòng)的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出相應(yīng)圖形,并求出線段MN的長.

【答案】1-6 8-3t;(2)點(diǎn)P運(yùn)動(dòng)3.5秒時(shí) PQ兩點(diǎn)相遇;(3MN的長度不會(huì)發(fā)生變化,MN的長為7.

【解析】

1)根據(jù)AB=14,點(diǎn)A表示的數(shù)為8,即可得出B表示的數(shù);再根據(jù)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),即可得出點(diǎn)P表示的數(shù);

2)點(diǎn)P運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)Q,則AC=5x,BC=3x,根據(jù)AC-BC=AB,列出方程求解即可;

3)分①當(dāng)點(diǎn)P在點(diǎn)A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),②當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí),利用中點(diǎn)的定義和線段的和差求出MN的長即可.

1)∵點(diǎn)A表示的數(shù)為8BA點(diǎn)左邊,AB=14,

∴點(diǎn)B表示的數(shù)是8-14=-6,

∵動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒,

∴點(diǎn)P表示的數(shù)是8-3t

故答案為:-6,8-3t;

2)由已知可得t秒后,點(diǎn)Q表示的數(shù)為t-6;

當(dāng)P、Q兩點(diǎn)相遇時(shí)得:8-3t=t-6

解得:t=3.5

答:點(diǎn)P運(yùn)動(dòng)3.5秒時(shí) P、Q兩點(diǎn)相遇;

3MN的長度不會(huì)發(fā)生變化,

①當(dāng)點(diǎn)P在線段AB上時(shí),如圖

MAP的中點(diǎn),NPB的中點(diǎn),

PM= PN=,

PM+PN=,

MN==7;

②當(dāng)點(diǎn)P在線段AB延長線上時(shí),如圖

MAP的中點(diǎn),NPB的中點(diǎn),

PM= PN=,

PM-PN=,

MN==7,

綜上所述MN的長為7.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】環(huán)保健康的“共享單車”已成為人們短途出行的一種新方式,一輛新投放市場的單車其先期成本為1050元.如圖是一輛新投放的共享單車其運(yùn)營收入w1和運(yùn)營支出w2關(guān)于時(shí)間m的函數(shù)圖象.
注:一輛單車的盈利=運(yùn)營收入﹣運(yùn)營支出﹣先期成本
(1)分別求w1及運(yùn)營60天后w2關(guān)于時(shí)間m的函數(shù)關(guān)系式.
(2)求一輛新投放市場的單車恰好收回先期成本需要運(yùn)營多少天?
(3)某公司投放市場一批單車,其先期成本不少于2.1萬元但不超過10.5萬元,經(jīng)過一段時(shí)間的市場試運(yùn)營共盈利3550元,則該公司試運(yùn)營的天數(shù)為天(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】興隆商場用36萬元購進(jìn)A、B兩種品牌的服裝,銷售完后共獲利6萬元,其進(jìn)價(jià)和售價(jià)如下表:

該商場購進(jìn)A、B兩種服裝各多少件?

(2)第二次以原價(jià)購進(jìn)A、B兩種服裝,購進(jìn)B服裝的件數(shù)不變,購進(jìn)A服裝的件數(shù)是第一次的2倍,A種服裝按原價(jià)出售,而B種服裝打折銷售;若兩種服裝銷售完畢,要使第二次銷售活動(dòng)獲利不少于81600元,則B種服裝最低打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=120°OC是∠AOB內(nèi)部任意一條射線,ODOE分別是∠AOC,∠BOC的角平分線,下列敘述正確的是(

A. AOD+BOE=60°B. AOD=EOC

C. BOE=2CODD. DOE的度數(shù)不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為13,以CD為斜邊向外作Rt△CDE.若點(diǎn)A到CE的距離為17,則CE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)連接在一起的菱形的邊長都是1cm,一只電子甲蟲從點(diǎn)A開始按ABCDAEFGAB…的順序沿菱形的邊循環(huán)爬行,當(dāng)電子甲蟲爬行2014cm時(shí)停下,則它停的位置是(   )

A. 點(diǎn)F B. 點(diǎn)E C. 點(diǎn)A D. 點(diǎn)C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點(diǎn)P(x1,y1)平移后的對應(yīng)點(diǎn)為P′(x1+6,y1+4)。

(1)請?jiān)趫D中作出△A′B′C′;(2)寫出點(diǎn)A′、B′、C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:|﹣2|﹣( ﹣π)0+tan45°+( ﹣1

查看答案和解析>>

同步練習(xí)冊答案