【題目】環(huán)保健康的“共享單車”已成為人們短途出行的一種新方式,一輛新投放市場的單車其先期成本為1050元.如圖是一輛新投放的共享單車其運營收入w1和運營支出w2關(guān)于時間m的函數(shù)圖象.
注:一輛單車的盈利=運營收入﹣運營支出﹣先期成本
(1)分別求w1及運營60天后w2關(guān)于時間m的函數(shù)關(guān)系式.
(2)求一輛新投放市場的單車恰好收回先期成本需要運營多少天?
(3)某公司投放市場一批單車,其先期成本不少于2.1萬元但不超過10.5萬元,經(jīng)過一段時間的市場試運營共盈利3550元,則該公司試運營的天數(shù)為天(直接寫出答案).

【答案】
(1)解:每天的運營收入為1800÷60=30(元),

∴w1關(guān)于時間m的函數(shù)關(guān)系式為w1=30m;

運營60天后每天的運營支出為(2100﹣900)÷(120﹣60)=20(元),

∴運營60天后w2關(guān)于時間m的函數(shù)關(guān)系式為w2=900+20(m﹣60)=20m﹣300.


(2)解:運營前60天每天的運營支出為900÷60=15(元),

∴運營前60天w2關(guān)于時間m的函數(shù)關(guān)系式為w2=15m.

當0≤m≤60時,w1﹣w2=15m=1050,

解得:m=70(不合適,舍去);

當m>60時,w1﹣w2=10m+300=1050,

解得:m=75.

答:一輛新投放市場的單車恰好收回先期成本需要運營75天


(3)80
【解析】解: (3)設(shè)該公司投放市場的單車共x輛,

根據(jù)題意得:

解得:20≤x≤100.

∵經(jīng)過一段時間的市場試運營共盈利3550元,

∴(10m+300﹣1050)x=(10m﹣750)x=3550,

∴x=

∵x為正整數(shù),

∴m﹣75為355的約數(shù),

∴m﹣75=5或m﹣75=71(不合題意,舍去),

∴m=80.

所以答案是:80.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由梯子A B和梯子AC搭成的腳手架,其中AB=AC=5米,∠α=70°.

(1)求梯子頂端A離地面的高度AD的長和兩梯腳之間的距離BC的長.
(2)生活經(jīng)驗告訴我們,增大兩梯腳之間的距離可降低梯子的高度,若BC長達到6米,則梯子的高度下降多少米?(以上結(jié)果均精確到0.1米,供參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x、y的二元一次方程組的解都為正數(shù).

(1)求的取值范圍;

(2)若上述二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,且這個等腰三角形的周長為9,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標系中,O為坐標原點,△OAB的頂點A、B的坐標分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線y=﹣m(m> )于點C,連結(jié)AC,以點A為圓心,AC為半徑畫弧交x軸負半軸于點D,連結(jié)AD、CD.

(1)求證:△ABC≌△AOD;
(2)設(shè)△ACD的面積為S,求S關(guān)于m的函數(shù)關(guān)系式;
(3)若四邊形ABCD恰有一組對邊平行,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2+ x﹣2與x軸正半軸交于點A,點D(0,m)為y軸正半軸上一點,連結(jié)AD并延長交拋物線于點E,若點C(4,n)在拋物線上,且CE∥x軸.
(1)求m,n的值;
(2)連結(jié)CD并延長交拋物線于點F,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方法回顧:在進行數(shù)值估算時,我們常根據(jù)所求數(shù)值的條件確定它的大致范圍,然后通過逐步縮小數(shù)值存在范圍的方法,最終求得較為準確的數(shù)值.

如我們在探究面積為2的正方形的邊長a的值時,有如下探究過程:

1<a<2

1<s<4

1.4<a<1.5

1.96<s<2.25

1.41<a<1.42

1.9881<s<2.0164

1.414<a<1.415

1.999396<s<2.002225

我們也可以借助數(shù)軸直觀地看出“逐步縮小數(shù)值的存在范圖”的過程,

這種方法在我們的解決向題的過程中經(jīng)常會用到

問題提出:a是小于100的正整數(shù),已知它的立方,不借助計算器,如何確定a呢?

問題探究:我們不妨由簡單到復(fù)雜,從一位整數(shù)的立方開始硏究

步驟一、若13a3<103,則1<a<10.即已知一個一位整數(shù)的立方為a3,怎樣確定a?

易得:13=1,23=8,33=27,43=64,53=125,63=216,73=343:83=512,93=729,可以通過從19的九個整數(shù)的立方值確定這個數(shù).觀察這九個立方值我們還能發(fā)現(xiàn),他們的個位數(shù)字各不相同.

步驟二、若103a3<1003.則10<a<100,即已知一個兩位數(shù)的立方為a3,怎樣確定a?我們不妨舉幾個特例,以便尋找解決問題的方法.

特例1.如果一個兩位整數(shù)a的立方是5832,怎樣確定a?

因為103<5832<1003,所以10<a<100,a是一個兩位數(shù).

又因為103<5832<203,所以我們可以確定5832的十位數(shù)字是  ;再根據(jù)步驟一我們就能得出它的個位數(shù)是   ;從而確定這個兩位數(shù)是   

特例2.如果x是一個兩位整數(shù),且x3=614125,請你仿照上面的過程說明你確定這個兩位整數(shù)的方法.

拓展應(yīng)用:一顆近似球形的小行星的體積的為2624000πm3,請你根據(jù)以上方法求出這個小行星的半徑.(球的體積公式vπR3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)夫?qū)⑻O果樹種在正方形的果園內(nèi).為了保護蘋果樹不怕風(fēng)吹,他在蘋果樹的周圍種針葉樹.在下圖里,你可以看到農(nóng)夫所種植蘋果樹的列數(shù)(n)和蘋果樹數(shù)量及針葉樹數(shù)量的規(guī)律:當n為某一個數(shù)值時,蘋果樹數(shù)量會等于針葉樹數(shù)量,則n為( )

A.6
B.8
C.12
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)y=2kx2-(4k+1)x-k+1(k是實數(shù)).教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論,教師作為活動一員,又補充一些結(jié)論,并從中選出如下四條:
①存在函數(shù),其圖象經(jīng)過(1,0)點;
②存在函數(shù),該函數(shù)的函數(shù)值y始終隨x的增大而減。
③函數(shù)圖象有可能經(jīng)過兩個象限;
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負數(shù).
其中正確的結(jié)論有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14.動點P從點A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為t(t >0)秒.

(1)寫出數(shù)軸上點B表示的數(shù) ,點P表示的數(shù) (用含t的代數(shù)式表示);

(2)動點Q從點B出發(fā),以每秒1個單位長度的速度沿數(shù)軸向右勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時P、Q兩點相遇?

(3)MAP的中點,NPB的中點.P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出相應(yīng)圖形,并求出線段MN的長.

查看答案和解析>>

同步練習(xí)冊答案