【題目】海上有一小島,為了測(cè)量小島兩端A、B的距離,測(cè)量人員設(shè)計(jì)了一種測(cè)量方法,如圖所示,已知B點(diǎn)是CD的中點(diǎn),E是BA延長(zhǎng)線上的一點(diǎn),測(cè)得AE=8.3海里,DE=30海里,且DEEC,cosD=

(1)求小島兩端A、B的距離;

(2)過點(diǎn)C作CFAB交AB的延長(zhǎng)線于點(diǎn)F,求sinBCF的值.

【答案】解:(1)在RtCED中,CED=90°,DE=30海里,

。CE=40(海里),CD=50(海里)。

B點(diǎn)是CD的中點(diǎn),BE=CD=25(海里)。

AB=BE﹣AE=25﹣8.3=16.7(海里).

答:小島兩端A、B的距離為16.7海里。

(2)設(shè)BF=x海里,

在RtCFB中,CFB=90°,CF2=CB2﹣BF2=252﹣x2=625﹣x2

在RtCFE中,CFE=90°,CF2+EF2=CE2,即625﹣x2+(25+x)2=1600。

解得x=7。

【解析】

試題(1)在RtCED中,利用三角函數(shù)求出CE,CD的長(zhǎng),根據(jù)中點(diǎn)的定義求得BE的長(zhǎng),AB=BE﹣AE即可求解。

(2)設(shè)BF=x海里.在RtCFB中,利用勾股定理求得CF2=CB2﹣BF2=252﹣x2=625﹣x2.在RtCFE中,列出關(guān)于x的方程,求得x的值,從而求得sinBCF的值。 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年2月16日,由著名導(dǎo)演林超賢的電影《紅海行動(dòng)》在各大影院上映后,好評(píng)不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用摸球的辦法決定誰去看電影,規(guī)則如下:在一個(gè)不透明的袋子中裝有編號(hào)1~4的四個(gè)球(除編號(hào)外都相同),從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再從中摸出一個(gè)球,記下數(shù)字,若兩次數(shù)字之和大于5,則小亮獲勝,若兩次數(shù)字之和小于5,則小麗獲勝.

(1)請(qǐng)用列表或畫樹狀圖的方法表示出兩數(shù)和的所有可能的結(jié)果;

(2)分別求出小亮和小麗獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】班委會(huì)決定,選購圓珠筆、鋼筆共22支,送給山區(qū)學(xué)校的同學(xué)。已知圓珠筆每支5元,鋼筆每支6元。

(1)若購買圓珠筆、鋼筆剛好用去120元,問圓珠筆、鋼筆各買多少支?

(2)若購圓珠筆可9折優(yōu)惠,鋼筆可8折優(yōu)惠,在所需費(fèi)用不超過100元的前提下,請(qǐng)你寫出一種選購方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖直線的解析式為,直線的解析式為;這兩個(gè)圖象交于軸上一點(diǎn),直線軸的交點(diǎn)動(dòng)點(diǎn)從點(diǎn)出發(fā)沿軸以每秒1個(gè)單位長(zhǎng)的速度向左移動(dòng),設(shè)移動(dòng)時(shí)間為秒,當(dāng)__________時(shí),為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上依次有A,C,B三地,甲、乙兩人同時(shí)出發(fā),甲從A地騎自行車去B地,途經(jīng)C地休息1分鐘,繼續(xù)按原速騎行至B地,甲到達(dá)B地后,立即按原路原速返回A地;乙步行從B地前往A地.甲、乙兩人距A地的路程y(米)與時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問題:

(1)請(qǐng)寫出甲的騎行速度為   米/分,點(diǎn)M的坐標(biāo)為   ;

(2)求甲返回時(shí)距A地的路程y與時(shí)間x之間的函數(shù)關(guān)系式(不需要寫出自變量的取值范圍);

(3)請(qǐng)直接寫出兩人出發(fā)后,在甲返回A地之前,經(jīng)過多長(zhǎng)時(shí)間兩人距C地的路程相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(k+1)x+k2=0有兩個(gè)實(shí)數(shù)根x1、x2

(1)求k的取值范圍;

(2)若x1+x2=3x1x2﹣6,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長(zhǎng)為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長(zhǎng)度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:的角平分線,點(diǎn)分別在,上,且,

1)如圖1,求證:四邊形是平行四邊形;

2)如圖2,若為等邊三角形,在不添加輔助線的情況下,請(qǐng)你直接寫出所有的全等三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織一項(xiàng)公益知識(shí)競(jìng)賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場(chǎng)參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場(chǎng)參賽的概率.(請(qǐng)用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案