如圖,四邊形ABCD中,∠BAD=100°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為
 
考點(diǎn):軸對(duì)稱-最短路線問(wèn)題
專(zhuān)題:
分析:據(jù)要使△AMN的周長(zhǎng)最小,即利用點(diǎn)的對(duì)稱,使三角形的三邊在同一直線上,作出A關(guān)于BC和CD的對(duì)稱點(diǎn)A′,A″,即可得出∠AA′M+∠A″=∠HAA′=80°,進(jìn)而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.
解答:解:作A關(guān)于BC和CD的對(duì)稱點(diǎn)A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長(zhǎng)最小值.作DA延長(zhǎng)線AH,
∵∠DAB=100°,
∴∠HAA′=80°,
∴∠AA′M+∠A″=∠HAA′=80°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°
故答案為:160°.
點(diǎn)評(píng):本題考查的是軸對(duì)稱-最短路線問(wèn)題,涉及到平面內(nèi)最短路線問(wèn)題求法以及三角形的外角的性質(zhì)和垂直平分線的性質(zhì)等知識(shí),根據(jù)已知得出M,N的位置是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

操作與探究
(1)如圖1,已知點(diǎn)A,B的坐標(biāo)分別為(0,0),(4,0),將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△AB′C′.
①畫(huà)出△AB′C′;
②點(diǎn)C′的坐標(biāo)
 

(2)如圖2,在平面直角坐標(biāo)系中,函數(shù)y=x的圖象l是第一、三象限的角平分線.
實(shí)驗(yàn)與探究:由圖觀察易知A(0,2)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B(5,3)C(-2,5)關(guān)于直線l的對(duì)稱點(diǎn)B′、C′的位置,并寫(xiě)出它們的坐標(biāo):B′
 
、C′
 
;
歸納與發(fā)現(xiàn):結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),
你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(m,-n)關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)P'的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)
3(-1)2
+
3-8
+
3
-|1-
3
|
(2)
(-2)2
+|1-
2
|-(
2
)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某公園中央地上有一大理石球,小明想測(cè)量球的半徑,于是找了兩塊厚10cm的磚塞在球的兩側(cè)(如圖所示),他量了下兩磚之間的距離剛好是60cm,則這個(gè)大石球的半徑為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算-6ab2+b2a+ab2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)C是線段AB的黃金分割點(diǎn),且AC>BC,AB=2,則AC為( 。
A、
5
-1
B、3-
5
C、
-1
2
D、0.618

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果x與y存在3x-2y=0(y≠0)的關(guān)系,那么x:y=( 。
A、2:3B、3:2
C、-2:3D、-3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

簡(jiǎn)化
1+
1
n2
+
1
(n+1)2
,所得結(jié)果正確的是( 。
A、
1+
1
n2
+
1
(n+1)2
=1+
1
n
+
1
n+1
B、
1+
1
n2
+
1
(n+1)2
=1-
1
n
+
1
n+1
C、
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
D、
1+
1
n2
+
1
(n+1)2
=1-
1
n
-
1
n+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為⊙O的直徑,C為⊙O外一點(diǎn),過(guò)點(diǎn)C作的⊙O切線,切點(diǎn)為B,連結(jié)AC交⊙O于D,∠C=38°,點(diǎn)E在⊙O上運(yùn)動(dòng)(不與A、B重合),則∠AED的大小是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案