解分式方程:
(1)
x
x+1
+1=
2x+1
x
;
(2)
1
x+1
-
2x
x2-1
=1.
考點(diǎn):解分式方程
專題:計(jì)算題
分析:兩分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.
解答:解:(1)去分母,得x2+x(x+1)=(2x+1)(x+1),
解得x=-
1
2

經(jīng)檢驗(yàn):x=-
1
2
是原方程的解;
(2)去分母得:x-1-2x=x2-1,
整理得:x(x+1)=0,
解得:x1=0,x2=-1,
經(jīng)檢驗(yàn)x=-1是增根,分式方程的解為x=0.
點(diǎn)評(píng):此題考查了解分式方程,解分式方程時(shí)應(yīng)注意以下兩點(diǎn):(1)去分母時(shí),要將最簡(jiǎn)公分母乘以每一個(gè)式子,不要“漏乘”;(2)解分式方程時(shí)必須檢驗(yàn),檢驗(yàn)時(shí)只要代入最簡(jiǎn)公分母看其是否為0即可.若能使最簡(jiǎn)公分母為0,則該解是原方程的增根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

李華晚上在兩站相距50m的路燈下來回散步,DF=50m.已知李華身高AB=1.7m,燈柱CD=EF=8.5m.
(1)若李華距燈柱CD的距離為DB=xm,他的影子BQ=ym,求y關(guān)于x的函數(shù)關(guān)系式.
(2)若李華在兩路燈之間行走,則他前后兩個(gè)影子PB+BQ是否會(huì)發(fā)生變化?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙兩名同學(xué)進(jìn)行射擊訓(xùn)練,在相同條件下各射靶5次,成績(jī)統(tǒng)計(jì)如下:
命中環(huán)數(shù) 7 8 9 10
甲命中相應(yīng)環(huán)數(shù)的次數(shù) 2 2 0 1
乙命中相應(yīng)環(huán)數(shù)的次數(shù) 1 3 1 0
(1)計(jì)算甲、乙兩人的射擊成績(jī)的平均數(shù);
(2)若從甲、乙兩人射擊成績(jī)方差的角度評(píng)價(jià)兩人的射擊水平,請(qǐng)通過計(jì)算說明:誰的射擊成績(jī)更穩(wěn)定些?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各式:39×41=402-12,48×52=502-22,56×64=602-42,65×75=702-52,83×97=902-72,….
(1)猜想并用字母寫出你發(fā)現(xiàn)的規(guī)律:m•n=
 

(2)證明你寫出的等式的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

a4-8a2b2+16b4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在一個(gè)10×10的正方形網(wǎng)格中有一個(gè)△ABC.請(qǐng)?jiān)诰W(wǎng)格中畫出將△ABC先向下平移5個(gè)單位,再向左平移4個(gè)單位得到的△A1B1C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,直角梯形ABCD中,AB∥CD,∠ABC=90°,AC=CD=10cm,AB=8cm,點(diǎn)P由點(diǎn)C出發(fā)沿CA方向運(yùn)動(dòng),同時(shí)點(diǎn)E由點(diǎn)A出發(fā)沿AB方向運(yùn)動(dòng),點(diǎn)P與點(diǎn)E的運(yùn)動(dòng)速度都是1cm/s,當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)B,兩點(diǎn)的運(yùn)動(dòng)停止.過點(diǎn)E作EF∥AD,分別交CD、AC于點(diǎn)F、點(diǎn)G,連結(jié)EP,設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間是t(秒),回答以下問題:

(1)當(dāng)t取何值時(shí),EP∥BC?
(2)令△PEG的面積為S,當(dāng)0<t<5時(shí),求S關(guān)于t的函數(shù)關(guān)系式,若存在最大值,請(qǐng)求出此時(shí)的t值;
(3)是否存在t值,使△PEG為等腰三角形?若存在,請(qǐng)求出所有符合條件的t值;若不存在,請(qǐng)說明理由;
(4)如圖2,點(diǎn)E關(guān)于AC的對(duì)稱點(diǎn)是點(diǎn)E′,當(dāng)t=
 
時(shí)(直接寫出相應(yīng)的t值),PE′⊥EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

分解因式(x-1)2-2(x-1)+1的結(jié)果是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

兩個(gè)相似三角形對(duì)應(yīng)高之比為1:2,那么它們對(duì)應(yīng)中線之比為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案