【題目】如圖,矩形ABCD的對(duì)角線相交于點(diǎn)ODECA,AEBD

1)求證:四邊形AODE是菱形;

2)若將題設(shè)中“矩形ABCD”這一條件改為“菱形ABCD”,其余條件不變,則四邊形AODE的形狀是什么?不必說明理由.

【答案】1)見解析;(2)平行四邊形AODE是矩形,見解析.

【解析】

1)根據(jù)矩形的性質(zhì)求出OAOD,證出四邊形AODE是平行四邊形即可;

2)根據(jù)菱形的性質(zhì)求出∠AOD90°,再證出四邊形AODE是平行四邊形即可.

1)證明:∵矩形ABCD,

OAOCAC,ODOBBD,ACBD,

OAOD

DECA,AEBD

∴四邊形AODE是平行四邊形,

∴四邊形AODE是菱形.

2)解:∵DECA,AEBD

∴四邊形AODE是平行四邊形,

∵菱形ABCD

ACBD,

∴∠AOD90°

∴平行四邊形AODE是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中放置5個(gè)正方形,點(diǎn)B1y軸上,點(diǎn)C1、E1、E2、C2E3、E4、C3x軸上.若正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O60B1C1B2C2B3C3,則點(diǎn)A3x軸的距離是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初中生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問題之一.為此某市教育局對(duì)該市部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖①補(bǔ)充完整;

3)求出圖②中C級(jí)所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市近20000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把八個(gè)完全相同的小球平分為兩組,每組中每個(gè)分別寫上1,2,3,4四個(gè)數(shù)字,然后分別裝入不透明的口袋內(nèi)攪勻,從第一個(gè)口袋內(nèi)取出一個(gè)數(shù)記下數(shù)字后作為點(diǎn)P的橫坐標(biāo)x,然后再?gòu)牡诙䝼(gè)口袋中取出一個(gè)球記下數(shù)字后作為點(diǎn)P的縱坐標(biāo),則點(diǎn)P(x,y)落在直線y=﹣x+5上的概率是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】風(fēng)電已成為我國(guó)繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測(cè)得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測(cè)得葉片的頂端DD、C、H在同一直線上)的仰角是45°.已知葉片的長(zhǎng)度為35米(塔桿與葉片連接處的長(zhǎng)度忽略不計(jì)),山高BG10米,BGHG,CHAH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB4,∠DAB120°,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿AC向終點(diǎn)C運(yùn)動(dòng).過PPEABAB于點(diǎn)E,作PFADAD于點(diǎn)F,設(shè)四邊形AEPF與△ABD的重疊部分的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t

1)用含t的代數(shù)式表示線段BE的長(zhǎng);

2)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),求t的值;

3)求St之間的函數(shù)關(guān)系式;

4)在點(diǎn)P出發(fā)的同時(shí),有一點(diǎn)Q從點(diǎn)C出發(fā),以每秒6個(gè)單位的速度沿折線CDAB運(yùn)動(dòng),設(shè)點(diǎn)Q關(guān)于AC的對(duì)稱點(diǎn)是Q',直接寫出PQ'與菱形ABCD的邊垂直時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“用三角板畫圓的切線”的畫圖過程

如圖1,已知圓上一點(diǎn)A,畫過A點(diǎn)的圓的切線.

畫法:(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;

(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過點(diǎn)B,畫出另一條直角邊所在的直線AD.

所以直線AD就是過點(diǎn)A的圓的切線.

請(qǐng)回答:該畫圖的依據(jù)是_______________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,直線y= x+4 x軸相交于點(diǎn)A,與直線y= x相交于點(diǎn)P

1)求點(diǎn)P的坐標(biāo);

2)動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(dòng)(E不與點(diǎn)OA重合),過點(diǎn)E分別作EFx軸于F,EBy軸于B.設(shè)運(yùn)動(dòng)t秒時(shí), F的坐標(biāo)為(a0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出: Sa之間的函數(shù)關(guān)系式

3)若點(diǎn)M在直線OP上,在平面內(nèi)是否存在一點(diǎn)Q,使以A,P,M,Q為頂點(diǎn)的四邊形為矩形且滿足矩形兩邊AP:PM之比為1: 若存在直接寫出Q點(diǎn)坐標(biāo)。若不存在請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,,點(diǎn)上的動(dòng)點(diǎn),且.

(1)的長(zhǎng)度;

(2)在點(diǎn)D運(yùn)動(dòng)的過程中,弦AD的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)E,問ADAE的值是否變化?若不變,請(qǐng)求出ADAE的值;若變化,請(qǐng)說明理由.

(3)在點(diǎn)D的運(yùn)動(dòng)過程中,過A點(diǎn)作AH⊥BD,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案