【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為5的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(﹣10),點(diǎn)B在拋物線y=ax2+ax﹣2上.

1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為

2)拋物線的關(guān)系式為 ;

3)設(shè)(2)中拋物線的頂點(diǎn)為D,求DBC的面積;

4)將三角板ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°,到達(dá)AB′C的位置.請(qǐng)判斷點(diǎn)B′C′是否在(2)中的拋物線上,并說(shuō)明理由.

【答案】(1)(0,2),(﹣3,1);

(2)y=0.5x2+0.5x﹣2;

(3)S△BCD=;

(4)點(diǎn)B′、C′在(2)中的拋物線上.理由見(jiàn)解析.

【解析】分析:(1)求A點(diǎn)的坐標(biāo)就是求OA的長(zhǎng),可在直角三角形OAC中,根據(jù)AC=5,OC=1來(lái)求出OA的長(zhǎng),即可得出A的坐標(biāo).如果過(guò)Bx軸的垂線,假設(shè)垂足為F,那么ACO≌△CBH,OA=CFBF=OC,由此可求出B的坐標(biāo);

2)將已經(jīng)求出的AB的坐標(biāo)代入拋物線的解析式中即可求出拋物線的解析式;

3)根據(jù)(2)的函數(shù)關(guān)系式即可求出D點(diǎn)的坐標(biāo).求DBC的面積時(shí),可將DBC分成CBEDCE兩部分(假設(shè)BDx軸于E).可先根據(jù)B,D的坐標(biāo)求出BD所在直線的解析式,進(jìn)而求出E點(diǎn)的坐標(biāo),那么可求出CE的長(zhǎng),然后以B,D兩點(diǎn)的縱坐標(biāo)的絕對(duì)值分別作為BCEDCE的高,即可求出DBC的面積;(4)本題的關(guān)鍵是求出B′C′兩點(diǎn)的坐標(biāo).過(guò)點(diǎn)B′B′My軸于點(diǎn)M,過(guò)點(diǎn)BBNy軸于點(diǎn)N,過(guò)點(diǎn)C″C″Py軸于點(diǎn)P.然后仿照(1)中求坐標(biāo)時(shí)的方法,通過(guò)證RtAB′MRtBAN來(lái)得出B′的坐標(biāo).同理可得出C′的坐標(biāo).然后將兩點(diǎn)的坐標(biāo)分別代入拋物線的解析式中,進(jìn)而可判斷出兩點(diǎn)是否在拋物線上.

本題解析:1)∵C1,0),∴OC=1,∵AC= ,∴OA==2,∴A02),

BHx軸于H,如圖1,∵△ACB為等腰直角三角形,∴CA=CB,∠ACB=90°

∵∠ACO+BCH=90°,∠ACO+CAO=90°,∴∠CAO=BCH

ACOCBH,∴△ACO≌△CBH,∴OC=BH=1,AO=CH=2,∴B(﹣3,1);

故答案為(0,2),(﹣3,1);

2)把B(﹣31)代入y=ax2+ax29a3a2=1,解得a=0.5,∴拋物線解析式為y=0.5x2+0.5x2;

故答案為y=0.5x2+0.5x2;

3)∵y=0.5x2+0.5x2=0.5x+0.52 ,∴D(﹣0.5,﹣),設(shè)直線BD的關(guān)系式為y=kx+b,

B(﹣3,1)、D(﹣0.5,﹣ )代入得 ,解得,

BD的關(guān)系式為y= x ;直線BDx軸交點(diǎn)為E,如圖1,

當(dāng)y=0時(shí),﹣x=0,解得x=2.2,則E(﹣2.2,0),

SBCD=SBCE+SDCE=0.5·(﹣1+2.2·1+0.5·(﹣1+2.2·=;

4)點(diǎn)B′、C′在(2)中的拋物線上.理由如下:

如圖2,過(guò)點(diǎn)B′B′Ny軸于點(diǎn)N,過(guò)點(diǎn)BBFy軸于點(diǎn)F,過(guò)點(diǎn)C′C′My軸于點(diǎn)M,

∵三角板ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°,到達(dá)AB′C的位置,

∴∠CAC′=90°,∠BAB′=90°AC=AC′,AB=AB′,

∵∠BAF+B′AN=90°,∠BAF+ABF=90°,∴∠ABF=B′AN

RtAB′NRtBAF中, ,∴RtAB′NRtBAF,

B′N=AF=2,AN=BF=3,∴B′1,﹣1),同理可得AC′M≌△CAO

C′M=OA=2,AM=OC=1,∴C′2,1),

當(dāng)x=1時(shí),y=x2+x2=+2=1,所以點(diǎn)B′1,﹣1)在拋物線上,

當(dāng)x=2時(shí),y=x2+x2=2+12=1,所以點(diǎn)C′2,1)在拋物線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8.5046用四舍五入法精確到0.01后所得到的近似數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,五邊形ABCDE中,AB∥CD,∠1,∠2,∠3分別是∠BAE,∠AED,∠EDC的外角,則∠1+∠2+∠3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠MAN=120°,AC平分∠MAN.B,D分別在射線AN,AM上.

(1)在圖(1)中,當(dāng)∠ABC=∠ADC=90°時(shí),求證:AD+AB=AC.
(2)若把(1)中的條件“∠ABC=∠ADC=90°”改為∠ABC+∠ADC=180°,其他條件不變,如圖(2)所示.則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將拋物線y=x2﹣4x+1向左平移2個(gè)單位,再向上平移3個(gè)單位所得拋物線解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是5cm,則∠AOB的度數(shù)是(

A.25°
B.30°
C.35°
D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列由四舍五入得到的近似數(shù)說(shuō)法正確的是( 。

A. 0.520精確到百分位

B. 3.056×104精確到千分位

C. 6.3萬(wàn)精確到十分位

D. 1.50精確到0.01

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣(x12+3,當(dāng)tx4時(shí),yx的增大而減小,則實(shí)數(shù)t的取值范圍是( 。

A.t0B.0≤t1C.1≤t4D.t≥4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】絕對(duì)值大于2且不大于5的整數(shù)有_____

查看答案和解析>>

同步練習(xí)冊(cè)答案