【題目】將拋物線y=x2﹣4x+1向左平移2個(gè)單位,再向上平移3個(gè)單位所得拋物線解析式為

【答案】y=x2
【解析】解:∵y=x2﹣4x+1, =x2﹣4x+4﹣4+1,
=(x﹣2)2﹣3,
∴原拋物線頂點(diǎn)坐標(biāo)為(2,﹣3),
∵向左平移2個(gè)單位,再向上平移3個(gè)單位,
∴平移后的拋物線頂點(diǎn)坐標(biāo)為(0,0),
∴所得拋物線解析式為y=x2
所以答案是:y=x2
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象的平移的相關(guān)知識(shí)點(diǎn),需要掌握平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對(duì)x軸左加右減;對(duì)y軸上加下減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD,BC的延長(zhǎng)線相交于點(diǎn)E.

(1)求證:AD是半圓O的切線;

(2)連結(jié)CD,求證:∠A=2CDE;

(3)若∠CDE=30°,OB=2,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解方程x26x+20,原方程可變形為( 。

A.x3211B.x327C.x+327D.x322

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)一元二次方程x2﹣3x﹣1=0的兩根為m,n,則mn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)Ax軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點(diǎn)DM,反比例函數(shù)y =的圖象經(jīng)過點(diǎn)D,與BC的交點(diǎn)為N

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)若點(diǎn)P在直線DM上,且使OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為5的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(﹣10),點(diǎn)B在拋物線y=ax2+ax﹣2上.

1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;

2)拋物線的關(guān)系式為 ;

3)設(shè)(2)中拋物線的頂點(diǎn)為D,求DBC的面積;

4)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°,到達(dá)AB′C的位置.請(qǐng)判斷點(diǎn)B′C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)多邊形的內(nèi)角和是900°,則這個(gè)多邊形是(

A. 四邊形 B. 五邊形 C. 六邊形 D. 七邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,點(diǎn)A、B、C是三個(gè)格點(diǎn)(網(wǎng)格線的交點(diǎn)叫做格點(diǎn))

(1)過點(diǎn)CAB的垂線,垂足為D;

(2)將點(diǎn)D沿BC翻折,得到點(diǎn)E,作直線CE;

(3)直線CE與直線AB的位置關(guān)系是   ;

(4)判斷:∠ACB   ACE.(填“>”、“<”“=”

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若﹣x2yn與3yx2是同類項(xiàng),則n的值是( )
A.﹣1
B.3
C.1
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案