如圖,直線與x軸、y軸交于A、B兩點(diǎn),∠BAO的平分線所在的直線AM的解析式是( )

A.
B.
C.
D.
【答案】分析:對(duì)于已知直線,分別令x與y為0求出對(duì)應(yīng)y與x的值,確定出A與B的坐標(biāo),在x軸上取一點(diǎn)B′,使AB=AB′,連接MB′,由AM為∠BAO的平分線,得到∠BAM=∠B′AM,利用SAS得出兩三角形全等,利用全等三角形的對(duì)應(yīng)邊相等得到BM=B′M,設(shè)BM=B′M=x,可得出OM=8-x,在Rt△B′OM中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出M坐標(biāo),設(shè)直線AM解析式為y=kx+b,將A與M坐標(biāo)代入求出k與b的值,即可確定出直線AM解析式.
解答:解:對(duì)于直線y=-x+8,
令x=0,求出y=8;令y=0求出x=6,
∴A(6,0),B(0,8),即OA=6,OB=8,
根據(jù)勾股定理得:AB=10,
在x軸上取一點(diǎn)B′,使AB=AB′,連接MB′,
∵AM為∠BAO的平分線,
∴∠BAM=∠B′AM,
∵在△ABM和△AB′M中,
,
∴△ABM≌△AB′M(SAS),
∴BM=B′M,
設(shè)BM=B′M=x,則OM=OB-BM=8-x,
在Rt△B′OM中,B′O=AB′-OA=10-6=4,
根據(jù)勾股定理得:x2=42+(8-x)2,
解得:x=5,
∴OM=3,即M(0,3),
設(shè)直線AM解析式為y=kx+b,
將A與M坐標(biāo)代入得:,
解得:,
則直線AM解析式為y=-x+3.
故選B.
點(diǎn)評(píng):此題考查了一次函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)與坐標(biāo)軸的交點(diǎn),勾股定理,全等三角形的判定與性質(zhì),以及坐標(biāo)與圖形性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線與x軸、y軸分別交于A、B兩點(diǎn).
(1)將直線AB繞原點(diǎn)O沿逆時(shí)針?lè)较蛐D(zhuǎn)90°得到直線A1B1
請(qǐng)?jiān)凇洞痤}卡》所給的圖中畫出直線A1B1,此時(shí)直線AB與A1B1的位置關(guān)系為
 
(填“平行”或“垂直”);
(2)設(shè)(1)中的直線AB的函數(shù)表達(dá)式為y1=k1x+b1,直線A1B1的函數(shù)表達(dá)式為y2=k2x+b2,則k1•k2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線與x軸、y軸交于A、B兩點(diǎn),且OA=OB=1,點(diǎn)P是反比例函數(shù)y=
1
2x
圖象在第一象限的分支上的任意一點(diǎn),P點(diǎn)坐標(biāo)為(a,b),由點(diǎn)P分別向x軸,y軸作垂線PM、PN,垂足分別為M、N;PM、PN分別與直線交于點(diǎn)E,點(diǎn)F.
(1)設(shè)交點(diǎn)E、F都在線段AB上,分別求出點(diǎn)E、點(diǎn)F的坐標(biāo);(用含a的代數(shù)式表示)
(2)△AOF與△BOE是否一定相似?如果一定相似,請(qǐng)予以證明;如果不一定相似或一定不相似,請(qǐng)簡(jiǎn)短說(shuō)明理由;
(3)當(dāng)點(diǎn)P在曲線上移動(dòng)時(shí),△OEF隨之變動(dòng),指出在△OEF的三個(gè)內(nèi)角中,大小始終保持不變的那個(gè)角和它的大小,并證明你的結(jié)論;
(4)在雙曲線y=
1
2x
上是否存在點(diǎn)P,使點(diǎn)P到直線AB的距離最短的點(diǎn),若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及最短距離;若不存在,說(shuō)明理由
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、如圖,直線與y軸的交點(diǎn)是(0,-3),則當(dāng)x<0時(shí),( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線與x軸、y軸分別交于A、B兩點(diǎn).
(1)將直線AB繞原點(diǎn)O沿逆時(shí)針?lè)较蛐D(zhuǎn)90°得到直線A1B1.請(qǐng)?jiān)凇洞痤}卡》所給的圖中畫出直線A1B1,此時(shí)直線AB與A1B1的位置關(guān)系為
垂直
垂直
(填“平行”或“垂直”)
(2)設(shè)(1)中的直線AB的函數(shù)表達(dá)式為y1=k1x+b1,直線A1B1的函數(shù)表達(dá)式為y2=k2x+b2,則k1•k2=
-1
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011屆寧夏銀川市初三上學(xué)期期末數(shù)學(xué)卷 題型:解答題

如圖①,直線與x軸、y軸分別交于B、C兩點(diǎn),點(diǎn)A在x軸負(fù)半軸上,且,拋物線經(jīng)過(guò)A、B、C三點(diǎn),D為線段AB中點(diǎn),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn)(其中m>0,n<0),連接DP交BC于點(diǎn)E.

(1)寫出A、B、C三點(diǎn)的坐標(biāo),并求拋物線的解析式;(5分)
(2) 當(dāng)△BDE是等腰三角形時(shí),直接寫出此時(shí)點(diǎn)E的坐標(biāo);(3分)
(3)連結(jié)PC、PB,△PBC是否有最大面積?若有,求出△PBC的最大面積和此時(shí)P點(diǎn)的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明理由。(3分)

查看答案和解析>>

同步練習(xí)冊(cè)答案