【題目】如圖,AC為矩形ABCD的對(duì)角線,將邊AB沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)M處,將邊CD沿CF折疊,使點(diǎn)D落在AC上的點(diǎn)N處.
(1)求證:四邊形AECF是平行四邊形;
(2)當(dāng)∠BAE為多少度時(shí),四邊形AECF是菱形?請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析(2)當(dāng)∠BAE=30°時(shí),四邊形AECF是菱形
【解析】
(1)首先證明△ABE≌△CDF,則DF=BE,然后可得到AF=EC,依據(jù)一組對(duì)邊平行且相等四邊形是平行四邊形可證明AECF是平行四邊形;
(2)由折疊性質(zhì)得到∠BAE=∠CAE=30°,求得∠ACE=90°-30°=60°,即∠CAE=∠ACE,得到EA=EC,于是得到結(jié)論.
(1)∵四邊形ABCD為矩形,
∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DCA.
由翻折的性質(zhì)可知:∠EAB=∠BAC,∠DCF=∠DCA.
∴∠EAB=∠DCF.
在△ABE和△CDF中,
∴△ABE≌△CDF(ASA),
∴DF=BE.
∴AF=EC.
又∵AF∥EC,
∴四邊形AECF是平行四邊形;
(2)當(dāng)∠BAE=30°時(shí),四邊形AECF是菱形,
理由:由折疊可知,∠BAE=∠CAE=30°,
∵∠B=90°,
∴∠ACE=90°-30°=60°,
即∠CAE=∠ACE,
∴EA=EC,
∵四邊形AECF是平行四邊形,
∴四邊形AECF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是CD邊的中點(diǎn),且BE⊥AC于點(diǎn)F,連接DF,則下列結(jié)論錯(cuò)誤的是( 。
A. △ADC∽△CFBB. AD=DF
C. D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系內(nèi),A,B為x軸上兩點(diǎn),以AB為直徑的⊙M交y軸于C,D兩點(diǎn),C為的中點(diǎn),弦AE交y軸于點(diǎn)F,且點(diǎn)A的坐標(biāo)為(2,0),CD=8
(1)求⊙M的半徑;
(2)動(dòng)點(diǎn)P在⊙M的圓周上運(yùn)動(dòng).
①如圖1,當(dāng)FP的長(zhǎng)度最大時(shí),點(diǎn)P記為P,在圖1中畫(huà)出點(diǎn)P0,并求出點(diǎn)P0橫坐標(biāo)a的值;
②如圖1,當(dāng)EP平分∠AEB時(shí),求EP的長(zhǎng)度;
③如圖2,過(guò)點(diǎn)D作⊙M的切線交x軸于點(diǎn)Q,當(dāng)點(diǎn)P與點(diǎn)A,B不重合時(shí),請(qǐng)證明為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱(chēng)點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B、D.
(1)求二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;
(3)若直線與y軸的交點(diǎn)為E,連結(jié)AD、AE,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形中,,,是邊上一點(diǎn),連接,將矩形沿折疊,頂點(diǎn)恰好落在邊上點(diǎn)處,延長(zhǎng)交的延長(zhǎng)線于點(diǎn).
(1)求線段的長(zhǎng);
(2)如圖2,,分別是線段,上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且,設(shè),.
①寫(xiě)出關(guān)于的函數(shù)解析式,并求出的最小值;
②是否存在這樣的點(diǎn),使是等腰三角形?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為1,點(diǎn)O是BC邊上的一個(gè)動(dòng)點(diǎn)(與B,C不重合),以O為頂點(diǎn)在BC所在直線的上方作∠MON=90°
(1)當(dāng)OM經(jīng)過(guò)點(diǎn)A時(shí),
①請(qǐng)直接填空:ON______(可能,不可能)過(guò)D點(diǎn):(圖1僅供分析)
②如圖2,在ON上截取OE=OA,過(guò)E點(diǎn)作EF垂直于直線BC,垂足為點(diǎn)F,作EH⊥CD于H,求證:四邊形EFCH為正方形;
③如圖2,將②中的已知與結(jié)論互換,即在ON上取點(diǎn)E(E點(diǎn)在正方形ABCD外部),過(guò)E點(diǎn)作EF垂直于直線BC,垂足為點(diǎn)F,作EH⊥CD于H,若四邊形EFCH為正方形,那么OE與OA是否相等?請(qǐng)說(shuō)明理由;
(2)當(dāng)點(diǎn)O在射線BC上且OM不過(guò)點(diǎn)A時(shí),設(shè)OM交邊AB于G,且OG=2.在ON上存在點(diǎn)P,過(guò)P點(diǎn)作PK垂直于直線BC,垂足為點(diǎn)K,使得S△PKO=S△OBG,連接GP,則當(dāng)BO為何值時(shí),四邊形PKBG的面積最大?最大面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,直線l與⊙O相切于點(diǎn)E,且l∥BC.
(1)求證:AE平分∠BAC;
(2)作∠ABC的平分線BF交AE于點(diǎn)F,求證:BE=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖2、圖3是某公共汽車(chē)雙開(kāi)門(mén)的俯視示意圖,ME,EF,FN是門(mén)軸的滑動(dòng)軌道,,兩門(mén)AB,CD的門(mén)軸A,B,C,D都在滑動(dòng)軌道上,兩門(mén)關(guān)閉時(shí)圖2,A,D分別在E,F處,門(mén)縫忽略不計(jì)(即B,C重合);兩門(mén)同時(shí)開(kāi)啟,A,D分別沿,的方向勻速滑動(dòng),帶動(dòng)B,C滑動(dòng);B到達(dá)E時(shí),C恰好到達(dá)F,此時(shí)兩門(mén)完全開(kāi)啟.已知.(1)如圖3,當(dāng)時(shí),______cm.(2)在(1)的基礎(chǔ)上,當(dāng)A向M方向繼續(xù)滑動(dòng)15cm時(shí),四邊形ABCD的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】揚(yáng)州市“五個(gè)一百工程”在各校普遍開(kāi)展,為了了解某校學(xué)生每天課外閱讀所用的時(shí)間情況,從該校學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并將結(jié)果繪制成如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
根據(jù)以上信息,請(qǐng)回答下列問(wèn)題:
(1)表中a= ,b= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)若該校有學(xué)生1200人,試估計(jì)該校學(xué)生每天閱讀時(shí)間超過(guò)1小時(shí)的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com