【題目】已知一個直角三角形紙片OAB,其中∠AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標系中,折疊該紙片,折痕與邊OB交于點C,與邊AB交于點D.
(1)若折疊后使點B與點A重合,求點C的坐標.
(2)若折疊后點B落在邊OA上的點為B′,是否存在點B′,使得四邊形BCB′D是菱形?若存在,請說明理由并求出菱形的邊長;若不存在,請說明理由.
【答案】(1)C(0,1.5);(2)存在點B',使得四邊形BCB'D是菱形,此時菱形的邊長為20﹣8.
【解析】
(1)折疊后使點B與點A重合,則C在AB的中垂線上,Rt△AOC中利用勾股定理即可得到方程,求得C的坐標;
(2)當B'C∥AB(或B'D∥BO)時,四邊形BCB'D是菱形,則△OB'C∽△OAB,依據(jù)相似三角形的對應邊的比相等即可求得B′C的長度,然后根據(jù)△AB'D∽△AOB,即可求得B′D的長.從而證得B'C=BC=B'D=BD.
(1)設C(0,m),(m>0),
則CO=m,
BC=AC=(4﹣m),
在Rt△AOC中,有(4﹣m)2﹣m2=4,
整理得,12m=8,
∴m=1.5,
∴C(0,1.5);
(2)存在,當B'C∥AB(或B'D∥BO)時,四邊形BCB'D是菱形,
∵∠AOB=90°,OA=2,OB=4,
∴AB=2,
∵B'C∥AB,
∴△OB'C∽△OAB,
∴,
設B'C=BC=x,則,
解得,x=2,
∵B'C∥AB,
∴∠CBD+∠BCB'=180°,
又∵∠CBD=∠CB'D,
∴∠CB'D+∠BCB'=180°,
∴B'D∥BO,
∴△AB'D∽△AOB,
∴,
設B'D=BD=y,
∴,
解得:y=20﹣8,
∴B'C=BC=B'D=BD,
∴四邊形BCB'D是菱形,
∴存在點B',使得四邊形BCB'D是菱形,此時菱形的邊長為20﹣8.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E、F分別是邊BC、CD上的點,且∠EAF=45°,把△ADF繞著點A順時針旋轉(zhuǎn)90°得到△ABG,請直接寫出圖中所有的全等三角形;
(2)在四邊形ABCD中,AB=AD,∠B=∠D=90°.
①如圖2,若E、F分別是邊BC、CD上的點,且2∠EAF=∠BAD,求證:EF=BE+DF;
②若E、F分別是邊BC、CD延長線上的點,且2∠EAF=∠BAD,①中的結論是否仍然成立?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,在平面直角坐標系中,點A,B,C都在坐標軸上,且OA=OB=OC,△ABC的面積為9,點P從C點出發(fā)沿y軸負方向以1個單位/秒的速度向下運動,連接PA,PB,D(﹣m,﹣m)為AC上的點(m>0)
(1)試分別求出A,B,C三點的坐標;
(2)設點P運動的時間為t秒,問:當t為何值時,DP與DB垂直且相等?請說明理由;
(3)如圖2,若PA=AB,在第四象限內(nèi)有一動點Q,連QA,QB,QP,且∠PQA=60°,當Q在第四象限內(nèi)運動時,求∠APQ與∠PBQ的度數(shù)和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了從甲、乙兩名射擊運動員中選拔一名參加比賽,對這兩名運動員進行測試,他們10次射擊命中的環(huán)數(shù)如下:
甲 | 7 | 9 | 8 | 6 | 10 | 7 | 9 | 8 | 6 | 10 |
乙 | 7 | 8 | 9 | 8 | 8 | 6 | 8 | 9 | 7 | 10 |
根據(jù)測試成績,你認為選擇哪一名運動員參賽更好?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣為了了解初中生對安全知識掌握情況,抽取了50名初中生進行安全知識測試,并將測試成績進行統(tǒng)計分析,繪制成了頻數(shù)分布表和頻數(shù)分布直方圖(未完成). 安全知識測試成績頻數(shù)分布表
組別 | 成績x(分數(shù)) | 組中值 | 頻數(shù)(人數(shù)) |
1 | 90≤x<100 | 95 | 10 |
2 | 80≤x<90 | 85 | 25 |
3 | 70≤x<80 | 75 | 12 |
4 | 60≤x<70 | 65 | 3 |
(1)完成頻數(shù)分布直方圖;
(2)這個樣本數(shù)據(jù)的中位數(shù)在第組;
(3)若將各組的組中值視為該組的平均成績,則此次測試的平均成績?yōu)?/span>;
(4)若將90分以上(含90分)定為“優(yōu)秀”等級,則該縣10000名初中生中,獲“優(yōu)秀”等級的學生約為人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAD=∠CAE,AB=AD,AC=AE.且E,F(xiàn),C,D在同一直線上.
(1)求證:△ABC≌△ADE;
(2)若∠B=30°,∠BAC=100°,點F是CE的中點,連結AF,求∠FAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明購買了一部新手機,到某通訊公司咨詢移動電話資費情況,準備辦理入網(wǎng)手續(xù),該通訊公司工作人員向他介紹兩種不同的資費方案:
方案代號 | 月租費(元) | 免費時間(分) | 超過免費時間的通話費(元/分) |
一 | 10 | 0 | 0.20 |
二 | 30 | 80 | 0.15 |
(1)分別寫出方案一、二中,月話費(月租費與通話費的總和)y(單位:元)與通話時間x(單位:分)的函數(shù)關系式;
(2)畫出(1)中兩個函數(shù)的圖象;
(3)若小明月通話時間為200分鐘左右,他應該選擇哪種資費方案最省錢.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(2k+1)x+k2﹣2=0的兩根為x1和x2 , 且(x1﹣2)(x1﹣x2)=0,則k的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。
A. 2 B. C. D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com