【題目】如圖,在ABC中,以點(diǎn)AB為直徑的⊙O分別與ACBC交于點(diǎn)E,D,且BD=CD

1)求證:∠B=∠C

2)過點(diǎn)DDFOD,過點(diǎn)FFHAB.若AB=5,CD=,求AH的值.

【答案】(1)詳見解析;(2)

【解析】

1)根據(jù)線段垂直平分線和等腰三角形的性質(zhì)可得結(jié)論;

2)根據(jù)題意可知OD△ABC的中位線,即OD∥AC,故DF⊥AC,根據(jù)圓周角定理AD⊥BC,可知△DCF∽△ACD,進(jìn)而可求得CF=1,DF=2,AF=4 過點(diǎn)DDM⊥AB,可知∠CFD∠BMD90°,可推出△CDF≌△BDM,即可得CF=BM=1,OM=,

又根據(jù)△AFH∽△ODM,可得,

(1)證明:連結(jié)AD.

AB為⊙O的直徑,

∴∠ADB90°,

∴ADBC,

BD=CD

AC=AB

∴∠B=∠C.

(2)∵AO=BO,BD=CD

OD△ABC的中位線

ODAC

DFOD

DFAC,

ADBC

△DCF∽△ACD

AC=AB=5,CD=,

CF=1,DF=2

AF=4,

過點(diǎn)DDM⊥AB

∴∠CFD=∠BMD90°,

∴△CDF≌△BDM

CF=BM=1OM=,

又∵△AFH∽△ODM,

,,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C90°,AC16cm,BC12cm.現(xiàn)有動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線AC向點(diǎn)C方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CB向點(diǎn)B方向運(yùn)動(dòng).如果點(diǎn)P的速度是4cm/s,點(diǎn)Q的速度是3cm/s,它們同時(shí)出發(fā),當(dāng)有一點(diǎn)到達(dá)所在線段的端點(diǎn)時(shí),就停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為ts

求:(1)用含t的代數(shù)式表示RtCPQ的面積S;

2)當(dāng)t2s時(shí),P、Q兩點(diǎn)之間的距離是多少?

3)當(dāng)t為多少秒時(shí),以CP、Q為頂點(diǎn)的三角形與ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是AD邊上的動(dòng)點(diǎn),將矩形ABCD沿BE折疊,點(diǎn)A落在點(diǎn)A′處,連接A′C、BD.

1)如圖1,若點(diǎn)A′恰好落在BD上,求tan∠ABE的值;

2)如圖2,已知AE=2,求△A′CB的面積;

3)點(diǎn)E在AD邊上運(yùn)動(dòng)的過程中,∠A′CB的度數(shù)是否存在最大值,若存在,求出此時(shí)線段AE的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解本校九年級(jí)學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級(jí)隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績(jī)?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下問題:

(1)這次隨機(jī)抽取的學(xué)生共有多少人?

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)這個(gè)學(xué)校九年級(jí)共有學(xué)生1200人,若分?jǐn)?shù)為80分(含80分)以上為優(yōu)秀,請(qǐng)估計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為3的扇形AOB,∠AOB=120°,以AB為邊作矩形ABCD交弧AB于點(diǎn)E,F,且點(diǎn)E,F為弧AB的四等分點(diǎn),矩形ABCD與弧AB形成如圖所示的三個(gè)陰影區(qū)域,其面積分別為,,則為( )(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的拋物線是二次函數(shù)yax2+bx+c(a0)的圖象,則下列結(jié)論:b+2a0;拋物線與x軸的另一個(gè)交點(diǎn)為(40);a+cb;(1,y1),(y2)是拋物線上的兩點(diǎn),則y1y2.其中正確的結(jié)論有(  )

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前中學(xué)生帶手機(jī)進(jìn)校園現(xiàn)象越來越受到社會(huì)關(guān)注,針對(duì)這種現(xiàn)象,某校數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長(zhǎng)對(duì)“中學(xué)生帶手機(jī)”現(xiàn)象的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.贊成;D.反對(duì)),并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長(zhǎng);

(2)求出圖2中扇形C所對(duì)的圓心角的度數(shù),并將圖1補(bǔ)充完整;

(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)1萬名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持反對(duì)態(tài)度;

(4)在此次調(diào)查活動(dòng)中,初三(1)班和初三(2)班各有2位家長(zhǎng)對(duì)中學(xué)生帶手機(jī)持反對(duì)態(tài)度,現(xiàn)從這4位家長(zhǎng)中選2位家長(zhǎng)參加學(xué)校組織的家;顒(dòng),用列表法或畫樹狀圖的方法求選出的2人來自不同班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線lAB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點(diǎn)DAB上方,且CDBP時(shí),求證:PC=AC;

(3)在點(diǎn)P的運(yùn)動(dòng)過程中

①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),且A(﹣6,0),D(﹣2,﹣8).

(1)求拋物線的解析式;

(2)點(diǎn)P是直線AC下方的拋物線上一動(dòng)點(diǎn),不與點(diǎn)A、C重合,求過點(diǎn)Px軸的垂線交于AC于點(diǎn)E,求線段PE的最大值及P點(diǎn)坐標(biāo);

(3)在拋物線的對(duì)稱軸上足否存在點(diǎn)M,使得ACM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案