【題目】將正方體骰子(相對面上的點數(shù)分別為1和6、2和5、3和4)放置于水平桌面上,如圖1。在圖2中,將骰子向右翻滾90°,然后在桌面上按逆時針方向旋轉(zhuǎn)90°,則完成一次變換。若骰子的初始位置為圖1所示的狀態(tài),那么按上述規(guī)則連續(xù)完成14次變換后,骰子朝上一面的點數(shù)是_____________________

【答案】5.

【解析】

先向右翻滾,然后再逆時針旋轉(zhuǎn)叫做一次變換,那么連續(xù)3次變換是一個循環(huán).本題先要找出3次變換是一個循環(huán),然后再求103整除后余數(shù)是1,從而確定第1次變換的第1步變換.

根據(jù)題意可知連續(xù)3次變換是一循環(huán),

所以10÷3=3…1.所以是第1次變換后的圖形,即按上述規(guī)則連續(xù)完成10次變換后,骰子朝上一面的點數(shù)是5.

故答案為:5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在等腰直角三角形中,AB=AC,點D是斜邊BC上的中點,點E、F分別為AB,AC上的點,且DE⊥DF。(1)若設(shè),,滿足.

(1)求BE及CF的長。

(2)求證:。

(3)(1)的條件下,求△DEF的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標(biāo)為(

A.(﹣3,0) B.(﹣6,0) C.,0) D.,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:一個矩形的兩鄰邊之比為 ,則稱該矩形為“特比矩形”.
(1)如圖①,在“特比矩形”ABCD中, = ,求∠AOD的度數(shù);
(2)如圖②,特比矩形CDEF的邊CD在半圓O的直徑AB上,頂點E、F在半圓上,已知直徑AB= ,求矩形CDEF的面積;
(3)在平面直角坐標(biāo)系xOy中,⊙O的半徑為 ,點Q的坐標(biāo)為(q,2 ),如果在⊙O上存在一點P,過點P作x軸的垂線與過點Q作y軸的垂線交于點M,過點P作y軸的垂線與過點Q作x軸的垂線交于點N,以點P、Q、M、N為頂點的矩形是“特比矩形”,請直接寫出q的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校實施課程改革,為初三學(xué)生設(shè)置了A,B,C,D,E,F(xiàn)共六門不同的拓展性課程,現(xiàn)隨機抽取若干學(xué)生進行了“我最想選的一門課”調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖表(不完整)

選修課

A

B

C

D

E

F

人數(shù)

20

30

根據(jù)圖標(biāo)提供的信息,下列結(jié)論錯誤的是(

A.這次被調(diào)查的學(xué)生人數(shù)為200人
B.扇形統(tǒng)計圖中E部分扇形的圓心角為72°
C.被調(diào)查的學(xué)生中最想選F的人數(shù)為35人
D.被調(diào)查的學(xué)生中最想選D的有55人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtACB中,∠ACB=90°,ABC的角平分線AD、BE相交于點P,過PPFADBC的延長線于點F,交AC于點H,則下列結(jié)論:①∠APB=135°;BF=BA;PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)過程中遇到這樣一個問題:

一個木箱漂浮在河水中,隨河水向下游漂去,在木箱上游和木箱下游各有一條小船,分別為甲船和乙船,兩船距木箱距離相等,同時劃向木箱,若兩船在靜水中劃行的速度是30m/min,那么哪條小船先遇到木箱?

小明是這樣分析解決的:

小明想通過比較甲乙兩船遇見木箱的時間,知道哪條小船先遇見木箱.設(shè)甲船遇見木箱的時間為xmin,乙船遇見木箱的時間為ymin,開始時兩船與木箱距離相等,都設(shè)為am,如圖1.

如圖2,利用甲船劃行的路程﹣木箱漂流的路程=開始時甲船與木箱的距離:

列方程:x(30+5)﹣5x=a

解得,x=

所以甲船遇見木箱的時間為min.

(1)參照小明的解題思路繼續(xù)完成上述問題;

(2)借鑒小明解決問題的方法和(1)中發(fā)現(xiàn)的結(jié)論解決下面問題:

問題:在一河流中甲乙兩條小船,同時從A地出發(fā),甲船逆流而上,乙船順流而下;劃行10分鐘后,乙船發(fā)現(xiàn)船上木箱不知何時掉入水中,乙船立即通知甲船,兩船同時掉頭尋找木箱,若兩船在靜水中劃行的速度是v(單位:m/min,v大于5),水流速度是5m/min,兩船同時遇見木箱,那么木箱是出發(fā)幾分鐘后掉入水中的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的半徑為4,OA為半徑,CD為弦,OACD交于點M,將弧CD沿著CD翻折后,點A與圓心O重合,延長OAP,使AP=OA,連接PC.

(1)求CD的長;

(2)求證:PCO的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展陽光體育一小時活動,根據(jù)學(xué)校實際情況,決定開設(shè)A:踢毽子;B:籃球:C:跳繩;D:乒乓球四種運動項目.為了解學(xué)生最喜歡哪一種運動項目,隨機抽取了一部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如兩個統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:

(1)本次共調(diào)查了多少名學(xué)生?

(2)請將兩個統(tǒng)計圖補充完整.

(3)求圖中“A”層次所在扇形的圓心角的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案