【題目】已知,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).當(dāng)∠APB=45°時,PD的長是( );
A. B. C. D. 5
【答案】A
【解析】
過P作PB的垂線,過A作PA的垂線,兩條垂線相于與E,連接BE,由∠APB=45°可得∠EPA=45°,可得△PAE是等腰直角三角形,即可求出PE的長,根據(jù)角的和差關(guān)系可得∠EAB=∠PAD,利用SAS可證明△PAD≌△EAB,可得BE=PD,利用勾股定理求出BE的長即可得PD的長.
過P作PB的垂線,過A作PA的垂線,兩條垂線相交與E,連接BE,
∵∠APB=45°,EP⊥PB,
∴∠EPA=45°,
∵EA⊥PA,
∴△PAE是等腰直角三角形,
∴PA=AE,PE=PA=2,
∵四邊形ABCD是正方形,
∴∠EAP=∠DAB=90°,
∴∠EAP+∠EAD=∠DAB+∠EAD,即∠PAD=∠EAB,
又∵AD=AB,PA=AE,
∴△PAD≌△EAB,
∴PD=BE===2,
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有5張寫著不同數(shù)字的卡片,請按要求完成下列問題:
若從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,則乘積的最大值是______.
若從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是______.
若從中取出4張卡片,請運(yùn)用所學(xué)的計算方法,寫出兩個不同的運(yùn)算式,使四個數(shù)字的計算結(jié)果為24.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙0經(jīng)過點D,E是⊙O上一點,且∠AED=45°,
(1)求證:CD是⊙O的切線.
(2)若⊙O的半徑為3,AE=5,求∠DAE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)專著,是“算經(jīng)十書”(漢唐之間出現(xiàn)的十部古算書)中最重要的一種.書中有下列問題:“今有邑方不知大小,各中開門,出北門八十步有木,出西門二百四十五步見木,問邑方有幾何?”意思是:如圖,點、點分別是正方形的邊、的中點,,,過點,步,步,則正方形的邊長為( )
A.步B.步C.步D.步
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是1個直角三角形和2個小正方形,直角三角形的三條邊長分別是a,b,c,其中a,b是直角邊,正方形的邊長分別是a、b.
(1)將4個完全一樣的直角三角形和2個小正方形構(gòu)成一個大正方形(如圖②).用兩種不同的方法列代數(shù)式表示圖②中的大正方形面積:
方法一:______________________________;
方法二:______________________________;
(2)觀察圖②,試寫出,,,這四個代數(shù)式之間的等量關(guān)系;
(3)利用(2)的結(jié)論計算的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點D、E分別是邊BC、CA上的點,且BD=CE,AD、BE相交于點O.
(1)求證:△BAE≌△ACD;
(2)求∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD⊥DF,EC⊥DF,∠1=∠3,∠2=∠4,求證:AE∥DF.(請在下面的解答過程的空格內(nèi)填空或在括號內(nèi)填寫理由)
證明:∵AD⊥DF,EC⊥DF,(已知)
∴∠BFD=∠ADF=90°.( )
∴EC∥( )
∴∠EBA=_____(兩直線平行,內(nèi)錯角相等)
∵∠2=∠4,(已知)
∴∠EBA=∠4.(等量代換)
∴AB∥_____.( )
∴∠2+∠ADC=180°.( )
∴∠2+∠ADF+∠3=180°.
∵∠1=∠3.(已知)
∴∠2+∠ADF+∠1=180°.(等量代換)
∴_____+∠ADF=180°.
∴AE∥DF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P(-5,m)和Q(3,m)是二次函數(shù)y=2x2+bx+1圖象上的兩點.
(1)求b的值;
(2)將二次函數(shù)y=2x2+bx+1的圖象沿y軸向上平移k(k>0)個單位,使平移后的圖象與x軸無交點,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題原型)如圖,在中,對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.
(小海的證法)證明:
是的垂直平分線,
,(第一步)
,(第二步)
.(第三步)
四邊形是平行四邊形.(第四步)
四邊形是菱形. (第五步)
(老師評析)小海利用對角線互相平分證明了四邊形是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯了.
(挑錯改錯)(1)小海的證明過程在第________步上開始出現(xiàn)了錯誤.
(2)請你根據(jù)小海的證題思路寫出此題的正確解答過程,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com